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Abstract

Language development is a process by means of which a human baby constructs an
adequate  competence  to  encode  & decode  meanings  in  language  of  her  parents.
Computationally  it  can  be  described  as  a  trinity  of  mutually  interconnected
problems :  clustering  of  all  tokens  which  baby  heard  into  1)  semantic   and  2)
grammatical categories ; and  3) discovery of grammatical rules allowing to combine
the members of diverse equivalence classes into syntactically correct and meaningful
phrases.  A theoretical,  « psycholinguistic » claim of our Thesis is  that  similary to
those theories which explain emergence of cultural or creative thinking as the result
of  evolutionary process occuring within an individual mind,  the emergence of
linguistic  representations  and  faculties  within  a  human  individuum  can  be  also
considered as a case where basic tenets of Universal Darwinism apply. The practical,
« cybernetic » aim of  the Thesis   is  to create a  computational  models  of  concept
learning,  part-of-speech  induction  and  grammar  induction  having  comparable
performance to existing models but based principially on evolutionary algorithms. It
shall be argued that the « fitness function » , which determines the « survival rate » of
« candidate grammars » emerging and disappearing in baby’s mind should be based
upon the idea that the most fit is such a grammar G which « minimizes the distance »
between  the  utterances  successfully  parsed  from linguistic  environment  E  by the
application of grammar G and the utterances potentially generated by the grammar G.

Keywords : evolutionary computing, language acquisition, genetic epistemology,  part-of-speech induction,
grammar  induction,  optimal  clustering,  machine  learning,  concept  construction,  grammar  systems,
motherese, toddlerese
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0. Introduction

A general form of Evolution Theory (ET) postulates that entities evolve and adapt to
their environment by a process of accumulation of information. Such a generalized
theory – often referred to as « Universal Darwinism » - can be and often is applied in
diverse scientific disciplines as diverse as biology, linguistics or even anthropology
and psychology. Since principal concepts and tenets of ET can be easily formalised
into  stochastic  « evolutionary »  algorithms,   ET can  yield  not  only  a  theoretical
framework but also a computational experimental methodology for any scienctific
discipline  whose  basic  concepts  and  principles  can  be  « reduced »  into  a
ET-consistent form.

The aim of my doctoral Thesis is to empirically – i.e. by means of computational
experiments  -  demonstrate  that  certain  phaenomena  observed by « developmental
linguists »  and  « psycholinguists »  can  be  explained  in  terms  of  principles  of
Universal Darwinism and as such can be modelled by « computational linguists » and
« Natural  Language  Processing  (NLP)  engineers»  who  shall  found  their
computational models upon methods offered by Evolutionary Computing paradigm.
More concretely, I shall try to indicate that  « evolutionary » optimization can be used
to yield solutions to at least three problems of language development:

1) induction of semantic categories, i.e. construction of « concepts »
2) the problem of induction of part-of-speech grammatical categories of words

natural languages, i.e. the problem of how equivalence classes like « nouns »,
« verbs », « adjectives » etc. are constructed by the language-acquiring agent

3) the  problem  of  grammar  induction,  i.e.  the  problem  of  how an  agent  can
acquire a grammar from the corpus or its environment

It shall be indicated that the term «language-acquring agent » could be interpreted
both as an organic  agent  (e.g.  a human baby) trying to  learn the language of  its
environment  (e.g.  its  parents)  as  well  as  a  computational  agent  (e.g.  a  Turing
Machine)  inducing  the  structural  properties  of  the  language  which  generated  the
corpora with which the agent has been confronted. In other terms, it shall be indicated
that ET is generalizable in such an extent, that its correct implementation may allow
two  systems  based  upon  Darwinian  principles  « replicate,  mutate,  select »  to
converge to same optimal or quasi-optimal categories   regardless the fact that the
substrate by means of which they computate is organic or not.

The first chapter will more closely present the above-mentioned basic principles of
the universal ET doctrine and enumerate certain scientific disciplines for which the
ET furnishes a useful theoretical framework. Asides biology where the role of ET is
evident, a discipline of «evolutionary psychology » shall be mentioned principially in



order to avert the reader that our aims are not limited to those posited by evolutionary
psychology. The « memetic theory », on the contrary, shall more precisely elucidate
our  ultimate  aim since   it  already introduces  a  novel  level  of  representation,  « a
meme »,  supposed  to  be  « the  basic  unit  of  immitation »  and  as  such  offers  an
interesting  starting  point  for  any  Darwin-consistent  theory  of  evolution  of
non-organic (e.g. cultural) structures and artefacts. It is, however, the constructionist
« genetic  epistemology »  (GE)  of  Jean  Piaget  which  shall  resonate  even  more
strongly  with  our  aims  –  since  what  GE ultimately  postulates  is  that  the  human
psyche – with all its linguistic, moral, object-manipulating faculties – pass through
the sequence of « stages » . For it is our belief that such Piagetian « stages » can be
explained,  in  computational  terms,  as  «quasi-optimal  attractors»  within  a  very
complicated « search space » of agent’s internal  representations and that  a sort of
evolutionary process occurs not only on a social-memetic level between the agents
imitating each other, but, in the first  place, within the agents (him|her|it)self.  This
Thesis is our tentative to base this « learning=evolution » belief on solid ground of
complexity theory.

The second chapter will address the topic of language development (LA). The topic is
so  vaste  and  deep  that  only  most  fundamental  subproblems  (i.e.  vocabulary
development, acquisition of part-of-speech categories and acquisition of gramamrs)
shall  be  briefly  described  and  some  basic  notions  like  « variation  set »  or
« motherese» will  be introduced. We shall  try to evit  the dispute between diverse
linguistic doctrines and schools  (e.g.  nativists,  cognitivists,  comparativists) ;  focus
shall be put upon points of consensus supported by empiric evidence. 

While the goal of first chapter is to furnish the theoretical framework and the goal of
the second is to specify the problem, it  is  the third chapter  which deals with the
concrete computational tentatives to unify the two. Major part of the chapter shall
deal  with  the  question  of  evaluation  of  diverse  inductive  models.  Some  most
successful computational models of part-of-speech induction (POS-i) and grammar
induction (GI) shall be mentioned in order to pave the way for the evolutionary ones.
As shall be indicated by this section, the tentatives to apply evolutionary algorithms
(EAs) to solve the POS-i and GI problem are, regardless the good results reported in
the litterature,  very rare.  In specific subsections of  the chapter,  we shall  mention
certain models, both psycholinguistic and computational, which justify our claim that
the process of  ontogeny of linguistic faculty can be not  only interpreted but  also
modelled as a process of evolutionary optimization of cognitive structures.



1. Universal Darwinism

Universal  Darwinism  (UD)  is  a  scientific  paradigm regrouping  diverse  scientific
theories extending the Darwinian theory of evolution and natural selection  (Darwin
1859) beyond the domain of biology. It can be understood as a generalized theoretical
framework aiming to explain the emergence of many complex phenomena in terms of
interaction of three basic processes: 1) variation 2) selection 3) retention. According
to UD paradigm, interaction of these three components yields a « universal algorithm
valid not  only in biology, but  in all  domains of knowledge where we can extract
informational  entities  –  replicators,  which are able  to  reproduce  themselves  with
variations and which are subjects  to selection »  (Kvasnička and Pospíchal  1999).
This  generic  algorithm is  nothing  else  than  traditional  Evolutionary  Theory  (ET)
which, when when considered as substrate-neutral, can be applied to such a vaste
number of scientific fields that it has been compared to a kind of « universal acid »
which « eats through just about every traditional concept, and leaves in its wake a
revolutionized  world-view,  with  most  of  the  old  landmarks  still  recognizable,  but
transformed in fundamental ways» (Dennett 1996) .

As  of  2013,  the  existing  scientific  disciplines  which  could  be  labeled  as
UD-consistent include: biology ; evolutionary (art | psychology | music | linguistics |
ethics  |economics  |  anthropology  |  epistemology  |  computation);  sociobiology ;
memetics ; (quantum | neural | psycho ) darwinism ; artificial life and many  others. In
regards to the overall aim of our Thesis, some of the most relevant instances of UD
are described in following sub-sections. 

1.1. Biological evolution

Evolutionary  Theory  was  born  when  young  Charles  Darwin  realised  that  the
« gradation and diversity of structure »  (Darwin 1906),  which he  had encountered
among mockingbirds of Galapagos islands, could be explained by natural tendency of
species  to  « adapt  to  changing  world ».  Parallely  to  Darwin’s  work  which  was
gradually  clarifying  the  terms  of  variability  and  its  close  relation  to
environment-originated selective pressures, Gregor Mendel was assessing statistical
distributions of  colours of  flowers of  his  garden peas in  Brno in order  to  finally
converge to fundamental principles of heredity . But it was only in 1953 when the
double-helix structure of the material substrate of heredity of biological species – the
DNA molecule – was described in (Watson & Crick, 1953) paper. 

In simple terms :  In the  DNA molecule, information is encoded as a sequence of
nucleotides.  Every nucleotide can contain one of  four nucleobases,  it  thus ideally
carry  2  bits  of  information.  Continuous  sequence  of  three  nucleotids  gives  a
« triplet » which, when interpreted by a intracellular « ribosome » machinery,  can be
« translated » into an amino-acid. Sequences of amino-acides yield proteins which
interact one with another in biochemical cascades. The result is a living organism
with its particular phenotype aiming to reproduce its genetic code. 

If, in the given time T  there are two organisms A and B whose genetic code differs in
such an extent that their phenotype differs, and if ever the phenotype of organism A



augments probability of A’s survival and reproduction in the external world W, while
the B’s phenotype diminishes such probability , we say that the A is better adapted to
world W than B, or more formally that fitness(A) > fitness(B). Evolutionary Theory
postulates that in case that there is a lack of resources in world W, descendants of the
organism B shall be gradually, after multiple generations, substituted by descendants
of a more fit organism « A ». This is so because during every act of reproduction, the
material reason for having a more fit phenotype - the DNA molecule – is transferred
from parent to offspring and the whole process is cumulative across generations.

It can, however, happen, that the world W changes. Or a random (stochastic) event –
a gamma ray,  the presence of a free radical  -  can occur which would tamper A’s
genetic code. Such an event – called « mutation » - shall result, in majority of cases,
in decrease of A’s fitness. Rarely, however, can mutations also  increase it. 

Another event which can transform  the genetic sequence is called « crossover ». It
can be formalised as an operator which substitutes one part of genetic code of the
organism A with  corresponding sequence of organism  B, and vice versa, the part of
B with the corresponding part of A. It is indeed especially the crossover operation,
first described by in the article of T.H. Morgan (Morgan 1916), which is responsible
for  « mixing  of  properties »  in  case  of  a  child  organism issued  from two parent
organisms. In more  concrete terms : the genetic code of such « diploid » organisms is
always stored in X pairs of chromosomes. Each chromosome in the pair is issued
from either father or mother organism which, during the process of meiosis, divide
their normally diploid cells into haploid gamete cellls (i.e. sperms in case of father
and eggs in case of mother). It is especially during the first meiotic phase that  

Figure 1 : Two types of crossover operation. Figures reproced from (Morgan, 1916)



crossover occurs, the content of DNA sequence of two grand-parents being mixed
and mapped during crossover operation into the chromosome contained in the gamete
which, if lucky, shell fuse with the gamete of another parent in the act of fecondation.

Resulting  « zygote »  is  again  diploid,  contains  mix of  fragments  of  genetic  code
originally  present  in  the  cells  of  all  four  grand-parents  of  the  nascent  organism.
Zygote  subsequently  exponentially  divides  into  growing  number  of  cells  which
differentiate from each other according to instructions contained in the genetic code
which are  triggered by biochemical  signals  coming from cell’s  both  internal  and
external  environment.  If  the  genetic  code  shall  endow  the  organism  with  such
properties that will allow it to survive in its environment until its own reproduction,
approximately  half  of  the  genetic  information   contained  in  its  DNA shall  be
transfered to the offspring organism. If not, the information as such shall disappear
from  the population due to its incompatibility with the environment.

1.2. Evolutionary Psychology 

It  was  already  Darwin  who  posited  that  ET  shall  have  profound  impact  upon
psychology :

« In the distant future I see open fields for far more important researches. Psychology
will be based on a new foundation that of the necessary acquirement of each mental
power and capacity by gradation. » (Darwin 1859)

While  two  possible  intepretations  of  this  Darwin’s  idea  exist,  Evolutionary
Psychology  (Ev.Psych.)  focuses  only  on  the  first  one.  It  aims  to  explain  diverse
faculties of human soul &  mind in terms of selective pressures which moulded the
modular  architecture of  human brain during millions of  years  of  its  phylogenetic
history. Its central premises state :  « The brain's adaptive mechanisms were shaped
by natural  and sexual  selection.  Different  neural  mechanisms are  specialized  for
solving problems in humanity's evolutionary past »  (Cosmides and Tooby 1997).

In  more  concrete  terms,  Evolutionary  Psychology  explains  quite  successfully
phaenomena  as  diverse  as  emergence  of  cooperation  and  altruistic  behaviour
(Hamilton 1963); male promiscuity and parental investment  (Trivers 1972) or even
the obesity  of  current  anglo-saxxon population  (Barrett  2007). All  this  and much
more  is  explained as  a  result  of  adaptation  of  homo sapiens  sapiens  (and all  its
biological ancestors) to dynamism of its ever-changing ecological and social niche.

Thus, in the long run, Ev.Psych. tends to explain and integrate all innate faculties of
human mind in the evolutionary framework. The problem with Ev.Psych., however, is
that  in  its  grandious  aim  to  « assemble  out  of  the  disjointed,  fragmentary,  and
mutually  contradictory  human  disciplines  a  single,  logically  integrated  research
framework for the psychological, social, and behavioral sciences »  (Cosmides and
Tooby  1997) it  can  sometimes  happen  that  Ev.Psych.  posits  as  innate,  and  thus
explainable in terms of biological natural selection, cognitive faculties which are not
innate but acquired. Thus it may be more often than rarely the case that whenever it
comes  to  the  famous  nature  vs.  nurture  (Galton  1875) controversy,  evolutionary



psychologists tend to defend the nativist cause even there, where it means to commit
a epistemological fallacy to do so1.

And what makes things even worse for the discipline of Evolutionary Psychology as
is currently performed is, that the forementioned Darwin’s precognition has, asides
the nativist & biological one, also another intepretation. Id est, when Darwin spoke
about mental powers and capacities acquired by gradation, one cannot exclude that he
was speaking not only about gradation in phylogeny, but also ontogeny.

1.3. Memetics

Theory  of memes or memetics is, in certain sense, a counter-reaction to Evolutionary
Psychology’s aims to explain human mental and cognitive faculties in terms of innate
propensities. Similiarly to Ev.Psych., memetics is  also issued from the discipline of
sociobiology which was supposed to be « The extension of population biology and
evolutionary theory to social organization »  (Wilson 1978). But differently to both
Ev.Psych.  and  sociobiology,  memetics  does  not  aim  to  explain  diverse
(cultur|psychologic|soci)al phenomena solely in terms of evolution operating upon
biochemical genes, but also in terms of evolution being realised on the plane of more
abstract information-carrying replicators called « memes » (Dawkins 2006).

The basic definition of the classical memetic theory is: « Meme is a replicator which
replicates  from  brain  to  brain  by  means  of  imitation»  (Blackmore  2000). These
replicators are somehow  represented in the host brain as some kind of « cognitive
structure » and if ever externalised by the host organism – no matter whether in form
a word, song, behavioral schema or an artefact – they can get copied into other host
organism endowed with the device to integrate such structures2.  Similary to genes
which often  network themselves  into  mutually  supporting  auto-catalytic  networks
(Kauffman  1996), memes  can  also  form  more  complex  memetic  complexes,
« memplexes », in order to augment the probability of their survival in time. Memes
can  thus  do  informational  crossovers  with  one  another  (syncretic  religions,  new
recepts from old ingredients or  DJ mixes can be nice examples of  such memetic
crossover) or they can simply mutate, either because of the noise present during the
imitation  (replication)  process,  or  due  to  other  entropy-related  decay-like  factors
related  to  the  ways  how  active  memes  are  ultimately  stored  in  brains  or  other
information processing devices.

Memetic  theory postulates  that  the  cumulative  evolutionary  process  applied  upon
such  information-carrying  stuctures  shall  ultimately  lead  to  emergence  of  such
complex phaenomena as culture, religion or language.

1.4. Evolutionary Epistemology

Epistemology is a philosophical discipline concerned with the source, nature, scope ,

1 If ever we accept the notion of falsifiability as an important criterion of accpetation or rejection of the scientific 
hypothesis (Popper et al. 1972), many hypotheses issued from EP would have to be rejected because, since being 
based in the distant past which is almost impossible to access, they are less falsifiable than hypotheses explaining 
the same phaenomena in terms of empiric data observable in the present.

2 In neurobiological terms, the faculty to imitate and hence to integrate memes from external environment is often 
associated to so-called « mirror neurons » (Rizzolatti and Craighero 2004). 



existence and divesity of forms of knowledge. Evolutionary epistemology (EE) is a
paradigm which aims to explain these by applying the evolutionary framework. But
under one EE label, at least two distinct topics are, in fact, addressed :

1) EE1 which aims to explain the biological evolution of cognitive and mental
faculties in humans and animals

2) EE2 postulates that knowledge itself evolves by selection and variation

EE1 can be thus considered as sub-discipline of Ev.Psych. and as such, is subject to
Ev.Psych.-directed criticism presented on previous page. EE2, however, is closer to
memetics  since  it  postulates  the  existence  of  a  second  replicator,  i.e.  of  an
information-carrying structure which is not materially encoded by a DNA molecule.

The  distinction  between  EE1 and  EE2    can  also  be  characterised  in  terms  of
« phylogeny »  and  « ontogeny ».  Given  the  definition  of  phylogeny  as  the
« processus which shapes the form of species » and contrasting it to ontogeny defined
as « processus shaping the form of individual », we find it important to reiterate that
while EE1  is more concerned with knowledge as a result of phylogenetic moulding of
DNA, EE2   points more in the direction of « ontogeny». In fact,  EE2 paves the way
for at least two other sub-interpretations :

EE2-1 Knowledge can emerge by variation&selection of ideas shared by a group
of mutually interacting individuals (Popper 1972)

EE2-2  Knowledge can emerge by variation&selection  of  cognitive structures
within one individuum

It is worth noting that while a so-called recapitulation theory stating that « ontogeny
recapitulates phylogeny »  (Haeckel 1879) is considered to be discredited by many
biologists and embryologists ; it is still held as valid by many reseachers in human
and  cognitive  sciences  observing  a  « strong  parallelism  between  cognitive
development of a child and … stages suggested in the archeological record » (Foster
2002)100  years  after  one  of  Darwin’s  companion  has  noted :  «  Education  is  a
repetition of civilization in little » (Spencer 1894).

1.5. Individual Creativity

In fact, the evolutionary epistemology was born with the tentative of D.T. Campbell
to explain both creative thinking and scientific discovery in terms of « blind variation
and  selective retention » of thoughts (Campbell 1960). Departing from introspective
works of mathematician Henri Poincare who stated « To create consists precisely in
not making useless combinations and in making those which are useful and which are
only a small minority. Invention is discernment, choice...Among chosen combinations
the most fertile will often be those formed of elements drawn from domains which are
far apart...What is the cause that,among the thousand products of our unconscious
activity, some are called to pass the threshold, while others remain below?» (Poincaré
1908), Campbell suggests that what we call creative thought can be described as a
Darwinian process whereby the  previously acquired knowledge blindly varies in
unconscious mind of  the creative thinker and that only some such structures are



subsequently  selectively  retained.  As  (Simonton  1999) puts  it: « How do  human
beings create variations? One perfectly good Darwinian explanation would be that
the  variations  themselves  arise  from  a  cognitive  variation-selection  process  that
occurs within the individual brain. »

1.6. Genetic Epistemology

« The fundamental hypothesis of genetic epistemology is that there is a parallelism between the
progress made in ... organization of knowledge and the corresponding formative psychological
processes. Well, now, if that is our hypothesis, what will be our field of study? Of course the most
fruitful, most obvious field of study would be reconstituting human history: the history of human
thinking in prehistoric man. Unfortunately, we are not very well informed about the psychology of
Neanderthal man or about the psychology of Homo siniensis of Teilhard de Chardin. Since this field
of biogenesis is not available to us, we shall do as biologists do and turn to ontogenesis. Nothing
could be more accessible to study than the ontogenesis of these notions.  There are children all
around us. » (Piaget 1974)

Strictly  speaking,  Piaget’s  developmental  theory  of  knowledge,  which he  himself
called Genetic Epistemology (GE) may seem to be utterly non-Darwinian. In fact it is
not even concerned with biochemical genes : Piagetian uses the term « genetic »  to
refer to a more general notion of « heredity » defined as structure’s tendency to guard
its identity  through time. 

The basic structural primitives of Piagetian theory are behavioral « schemas » which
can be defined as « a basic set of experiences and knowledge that has been gained
through  personal  experiences  that  define  how  things  should  be  and  act  in  the
person's  environment.  As  the  child  interacts  with  their  world  and  acquires  more
experiences these schemes are modified to make sense, or used to make sense of the
new experience »  (Bee and Boyd 2003).

There are two ways how such schemes can be modified. Either they « assimilate »
data from external environment. Or, if ever such assimilation is not possible because
it is simply not possible that child’s cognitive system matches the perceived external
datum with the internal pre-existing category, the process of « accomodation » takes
place which transforms the internal category to match the external datum. 

Ultimately, the set of schemes gets so out-dated or so altered by past modifications
that they are not useful anymore. Whenever such «equilibriation » occur, old set of
schemas is rejected, the child tends to « start fresh with a more up-to-date model »
(Bee and Boyd 2003), thus attaining new substage or stage of its development. In the
Piagetian system – which is based on very precise yet exhaustive observations of
dozens of children including his own – the order of stages is fixed and it is very
difficult, or even fully impossible, for evolving psyche to attain pre-operational stage
2 or  concrete operational  stage 3 if it had not even mastered all that is to master
during the sensorimotor stage 1 .

Given the fact that the GE paradigm involves :

• heredity – schemes are structures which tend to keep their identity in time 

• variation – schemes are altered by the environment-driven assimilation or 



accomodation 3

• selective pressures – only those schemas which are most well adapted to 
environment and/or form most functionally fit complexes with other schemas 
shall pass through the equilibriation milestone

it can be briefly stated that Piaget’s GE could be aligned with ET and UD. And what
more, it may be the case that notion of Piagetian stages is consisted with the notion of
attractor or locally optimal states whose emergence is, according to  complex system
theory  (Kauffman 1996; Flake 1999), inevitable in a system as complex as child’s
psyche definitely is.

1.7. Evolutionary computation

We have already mentioned (c.f. 1.1.) that evolution, as defined within UD, can be
thought of as a universal, generic algorithm. Not only can « evolutionary theory »
serve us to explain diverse phenomena around us, it can be also exploited for finding
solutions  to  diverse  problems.  Thus it  is  of  no  surprise  that  many researchers  in
informatics  realized  that  not  only can be the evolutionary process  encoded as  an
informatic algorithm, but that such algorithms could be useful as a heuristic which
could potentially lead to a discovery of useful (quasi)-optimal solutions to wide range
of diverse problems. First  explorations in the domain were done by Rechenberg’s
« evolutionary strategies »  (Rechenberg 1973) and Holland’s « genetic algorithms »
(Holland 1975) which, along with « evolutionary programming » (Fogel et al. 1966)
and « genetic programming » form the « evolutionary computation » subdiscipline of
computer science. 

All four approaches differ from classical optimization methods in following aspects :

1. using a population of potential solutions in their search

2. using explicit « fitness » instead of function derivatives

3. using probabilistic, rather than deterministic, transition rules »

(Kennedy et al. 2001)

3 Note that in terms of theory of evolutionary computation, one can relate the Piagetian notion of assimilation to an
operator of local variation which attracts the cognitive system to locally optimal agreement with its environment,
while accomodation suggests an interpretation in term of more global variation operators (like cross-over), which
could potentially allow the cognitive system to reach a state of global equilibrium in regards to environment.

Figure 2: Basic genetic algorithm schema. Reproduced from  (Pohlheim 1996)



1.7.1. Genetic algorithms & fitness landscapes

Basic  principle  of  « genetic  algorithms »  is  illustrated  on  Figure  2.  The  core
component of every genetic algorithm is the objective « fitness function » able to
attribute  a  cardinal  value  or  ordinal  rank  to  any  individum in  the  population  of
potential solutions.  In other terms, the fitness function yields the criterium according
to which one candidate individum is evaluated as « more fit » a solution, in regards to
the problem under  study,  than other potential  solutions present  in the population.
Population is the set of individual solutions. Every individual solution is encoded as a
vector of values (also called « chromosome » or « genome ») which can vary in time.
Designer  choice  related  to  the  way  how  the  problem  solutions  are  encoded  in
chromosomal vectors, e.g. the type (Boolean ? Integer ? Float ? Set? ) of different
elements of  the vector  is  also a crucial  one and can often determine whether the
algorithm shall succeed or fail.

In every generation – i.e. in every iteration of the algorithmic cycle represented by
the circle on Figure 2.  -  all  N individuals in the population are evaluated by the
fitness  function.  Every  individual  thus  obtains  the  « fitness »  value,  which
subsequently governs the « selection » procedure choosing a subset  of  individuals
from the current generation as those, whose genetic information shall reproduce into
next generations.  

In our Thesis we plan to exploit especially the « fitness proportionate selection » as
the  selection  operator.  This  operator,  also  called  « roulette  wheel  operator »
transforms the fitness fi of individual i into the probability pi of its survival by means
of a formula :

where N is the number of individuals in the population.

Once  the  « most  fit »  candidates  are  selected  by  the  selection  operator,  they  are
subsequently  mutually  recombined  by  means  of  « crossover »  operators  and/or
modified  by  means  of  « mutation »  operators.  Many  different  types  of  selection,
mutation and crossover operators  exist, for their overview c.f. (Sekaj 2005). For the
purpose of this work let’s just note that the probabilities of occurrence of mutation or
crossover have to be fairly low, otherwise no fitness-increasing information could be
transferred among generations and whole system will tend to present non-converging
chaotic behaviour (Nowak et al. 1999).

Another useful strategy, which guarantees that maximal fitness shall either increase
or at least stay constant,  is called elitism. In order to implement the strategy, one
simply guards one (or more) individual(s) with highest fitness unchanged for next
generation,  thus  protecting  « the  best  ones »  from  variations  which  would,  most
probably, decrease rather than increase the fitness4. 

Yet another widely used approach reinforces the selection pressure by removal of the

4 Note that in nature, elitism is often but not always  the case. For it can happen that, due to stochastic factors, the 
most fit individuals die before they succeed to reproduce themselves.



weakest individuals. Both elitist « survival of the fittest » and the contrary « removal
of the weakest » are often combined.

The selection of the most fit individuals from the old generation, their subsequent
replication and/or recombination and diversification yields a new generation. Because
individuals  with  lower  fitness  have  been  either  completely  or  at  least  partially
discarded by the selection process, one can expect that the overall  fitness of new
generation shall be higher than the fitness of the old generation.  With little bit of
luck, one can also hope that the most fit individuals of the new generation shall be
little bit more fitter than the most fit individuals discovered in the new generation –
this can happen if ever a « benign » mutation have occured, i.e. a modification which
had  moved  the  individual  from  the  lower  point  on  the  « fitness  landscape »  to
somewhat higher state.

The notion of  fitness landscape,  first  introduced in  (Wright 1932) is a metaphor
useful  for  understanding&explanation  of  diverse  evolutionary  phenomena.  The
landscape is depicted as a mountain range with peaks of varying height. The height at
any point on the landscape corresponds to its fitness value; i.e. the higher the point,
the  greater  the  fitness  of  an  individual  represented  by  the  given  point  of  the
landscape. In such a representation, the evolution of the organism to more and more
« fit » forms can be depicted as a movement up-hill, towards the most closest peak
(i.e. local optimum) or towards the highest peak of the whole landscape (i.e. global
optimum). Figure 3 illustrates a fitness landscape of a very simple organism with
only one gene (whose potential values are encoded by illustration’s X axis). 

Every arrow on the figure represents one possible individual. Its length represents the
variation which can be brought in by the mutation operator. The fact that individuals
always tend to move « upwards » indicates that selection pressures are involved. It
has  to  be  added  that  without  the  implementation  of  the  crossover  operator,  the
globally optimal state (encoded by point C) could not be attained for individuals who
haven’t originated at the slopes of C. Only some sort of crossover operator could
ensure that individuals who attained the local optima (encoded by peaks A, B, D)
could be mutually recombined (for example B with D) in a way that shall allow them
to leave the locally stable states and approach the globally optimal C.

The fact that genetic algorithms, thanks to « crossover » operators, can combine two

Figure  3:  Possible  fitness  landscape  for  a  problem  with  only  one
variable.  Horizontal  axis  represents  gene’s  value,  vertical  axis
represents fitness.



individuals from diverse sectors of the fitness landscape, allow them to find solutions
to problems where heuristics based on « gradient descent » should fail. 

1.7.2. Evolutionary programming & evolutionary strategies

Evolutionary programming (EP) and evolutionary strategies (ES) are methods whose
overall essence is very similar to GAs. There are, however, some subtle differences
among the approaches. 

In  EP,  mutation  is  the  principal  and  often  the  only  variation  operator.  While
recombination is  rarely  used,  « operators  are  freely  adapted to  fit  the  problem at
hand » (Kennedy et al. 2001). EP algorithms often double the size of population by
mixing  children  with  parents  and  then  halving  the  population  by  selection.
Tournament selection operator is often used. Another difference is that while GAs
were  developped  in  order  to  optimize  the  numeric  parameters  of  mathematical
function under study – and variation thus directly modifies the genotype – in EP, one
mutates the genotype but evaluates the fitness according to phenotype. EP is thus
often  used  for  construction  &  optimization  of  such  structures  like  « finite  state
automata »  (Fogel et al. 1966). A self-adaptation approach  (Bentley 1999) allowing
for mutation of the parameters of the evolution itself – e.g. the mutation rate – is also
frequently used.

Such an  approach of  « evolving the  evolution »  is  also  used in  ES which where
discovered  -  in  parallel  but  independetly  with  Holland’s  GAs  –  by  (Rechenberg
1973).  The  biggest  difference  between  EP  and  ES  is  thus  fact  that  ES  often
recombines  its  individuals  before  mutating  them.  Popular  and  well-performing
strategy thus seems to be :

1. Initialize the population

2. Perform recombination using P parents to form C children5

3. Perform mutation on all children

4. Evaluate children population and select P members from it.

5. If the termination criterion is not met, go to step 2 ; terminate otherwise.

Given the fact that in our Thesis, we shall often: 1) encode the problem of linguistic
category  induction  by  non-numeric  chromosomes  2)  evaluate  the  fitness  of
individuals by means of additional « phenotypic algorithms » we consider the works
of Fogel & Rechenberg to be of particular importance for our study.

1.7.3.Genetic programming

Contrary to GAs, E.Prog and E.Strat which operate upon the chromosomes (vectors)
of fixed length of numeric/boolean/character values, do individuals evolved by means
of Genetic Programming (GP) encode programs of arbitrary length and complexity.
In other terms, one may state that while above-mentioned EC methods look for the
most optimal solution of a given problem, GP tends to produce a hierarchical tree

5 Frequently used C/P ratio is 7



structure encoding a sequence of instructions (i.e. a program) able to yield optimal
solutions  to  a  whole  range of  problems.  Simply  said :  GP is  simply  a  way  how
computer programs can automatically « discover » new and useful programs.

The most important thing to do in order to  prepare a GP framework is to specify
how shall  be the resulting individuals (programs) encoded. Original choice of the
founder of the discipline, John Koza, was to encode all individuals as trees of LISP
S-expressions  composed  of  sub-trees,  which  are,  themselves,  also  LISP
S-expressions. Within such arborescent S-expressions, the terminal (i.e. leave nodes
where the branches end) nodes represent program’s variables and constants while the
non-terminal nodes (i.e. internal tree points) represent diverse functions contained in
the function set (e.g. arithmetic functions like +, -, *, / ; mathematic functions like
log, cos ; boolean functions like AND, OR, NOT ; conditional operators if/else etc.)

Figure  4  illustrates  how,  during  the  initial  run  of  the  algorithm,  an  individual  –
calculating,  for  example,  the  square  root  of  X+5  –  could  be  possibly  randomly
generated  by  implementing  a
following procedure :

1) « Root » of the program tree
is randomly chosen from the
function set, it is the function
sqrt.

2) The  function  sqrt  has  only
one argument (arity(sqrt)=1),
therefore it will take only one
input  from  the  randomly
determined  functor  +
(addition)

3) Functor + takes two inputs (arity(+)=2), therefore the tree bifurcates into two
lines in this node. It randomly choses, as the first argument, the constant 5 ;
and the variable X as the second argument. 

Note that in step 3, both arguments were chosen from the terminal set. If they would
have been chosen from the function set, the tree could bifurcate further. In order to
prevent  such  growth  of  trees  ad  infinitum,  a  limiting  « maximal  tree  depth »
parameter is more than often implemented in GP scenarios.

Once such a program has been generated, one can evaluate its fitness by confronting
it  with diverse input arguments and comparing its  output with a golden standard.
Such  a  random-program  generation  &  evaluation  is  repeated  for  all  N  initial
candidate programs, subsequently the most individuals are selected and varied. While
GP’s selection techniques can sometimes closely ressemble selection techniques as
used in GAs, variation operators are often of essentially different nature. This is so,
because GP’s not individual genomes or their linear sequences can be mutated or
crossed-over, but rather complex and hierarchical networks of expressions. In a case
of  cross-over,  for  example,  one  switches  whole  sub-tree  encoded  within  one

Figure 4: Sequence of steps constructing the program
sqrt(x+5)



individual, for a sub-tree encoded within another one.

GP-based solutions cannot be expected to function correctly if they do not satisfy  the
theoretical  properties  of  closure  and  sufficiency.  In  order  to  fulfill  the  closure
condition,  each  function  from  the  non-terminal  set  must  be  able  to  successfully
operate both on output of  any function in the non-terminal  set  and on any value
obtainable by a member of the terminal set. Even behaviour of some simple operators
thus has to be a priori adjusted (e.g. return 1 in case of division by zero) in order to
assure correct functioning of the resulting program.

On the other hand, sufficiency property demands that the set of functors and terminals
is sufficiently exhaustive. Otherwise the  solution could not be found. One can not,
for example, hope to discover equation for generating the Mandelbrot set if the initial
set  of  terminals  does  not  contain  the  notion  of  imaginary  number,  nor  does  the
function set contain any other explicit or implicit reference to the notion of complex
plane. Thus, while  the closure constraint delimits the upper bound beyond which the
discovery of the solution is not feasible, the sufficiency constraint delimits the lower
bound of the minimal set of « initial components » which have to be defined a priori,
so that discovery of the adequate program should be at least theoretically possible.

Other theoretical  notions as  well  as  diverse subtleties  (special  operators,  methods
how to distribute the initial population in the search space, fitness function proposals,
domains of application, etc.) of practical implementation, are to be found in possibly
the most important GP-concerning monography (Koza 1992).

1.7.4.Grammatical evolution

Grammatical  Evolution  (Gr.Ev)  is  a  variant  of  GP in  a  sense  that  it  also  use
evolutionary computing in order to automatically generate computer programs. The
most important difference between Gr.Ev and GP is that while GP operates directly
upon phenotypic trees representing program’s code itself  (for  example in form of
LISP expressions),   Gr.Ev  uses  the  evolutionary  machinery  for  the  purpose  of
generating grammars, which would subsequently generate the program code.

In Formal Language Theory, grammar is represented by the tuple {N, T, P, S} where
N denotes the  set of non-terminals, T the set of terminals, S is a symbol which is
member of N and P denotes the set of production rules that substitute elements of N
by elements of N, T or their combinations6. Consider a grammar exhaustive enough
to encode programs able to perform arbitrary number of operations of addition or
subtraction of two variables:

N = {expr, op, var}
T = { +, -, x, y}

S = expr
P =  {

<op> →  + | -

6 This is the case for so-called context-free and context-sensitive grammars.



<var> →  x | y
<expr> →  <var> | <expr> <op> <expr> 

Such a grammar contains three non-terminals,  non-terminal <op> which could be
subtituted for either terminal +  or terminal - ; non-terminal <var> which could be
subtituted for either terminal x  or terminal y ; and non-terminal <expr> which could
be substituted for either a non-terminal <var>, or a sequence of non-terminals <expr>
<op> <expr>. The fact that in this last production, the non-terminal <expr> is present
both on left and right side of the substitution rule gives this grammar a possibility to
recursively generate infinite number of expressions like :

x+x
x+y
y+x
y+y
x-x
x-y
y-y
y-x
x+x

x+x+x
x+x-x
x+x+y
x+x-y

x-x+y-y
x-x-y+y+x

y+y+x+x+y-x
etc.

Thus,  even  a  very  simple  grammar  with  only  four  terminal  symbols  and  three
non-terminal symbols to each of which are associated only two production rules can
theoretically  produce  an  infinite  number  of  distinct  individual  programs  able  to
perform basic arithmetic operations with two  variables. 

Generation of a given resulting expression is determined by the order of application
of specific production rules, starting with non-terminal symbol S. Such a sequence of
application of production rules is called derivation. For example, in order to derive
the individual « x+x », one has to apply production rules in following order :

S = <expr>
<expr> ::= <expr> <op> <expr> 

<expr> ::= <var> 
<var> ::= x
<op> :: = +

<expr> :: = <var>
<var> :: = x

while the individual « y-x » would be generated, if ever the starting symbol S should 
be expanded by a following sequence of production rules :



S = <expr>
<expr> ::= <expr> <op> <expr> 

<expr> ::= <var> 
<var> ::= y
<op> :: = -

<expr> :: = <var>
<var> :: = x

In Grammatical Evolution, it is this « order of application of production rules» which
is encoded in the individual chromosome. In other terms, individual chromosomes
encode when and where distinct production rules shall  be applied. Figure 5 more
closely illustrates, and puts into analogy with biological systems, the sequence of
transformations which every binary chromosome undergoes  during the process of
unfolding into fully functional program :

It can be easily infered from the above-displayed schema that the approach of Gr.Ev
is  quite  intricate  and  involves  multiple  steps  of  information  processing.  Whole
process starts with binary chromosome subsequently split  into 8-bit codons which
yield  an  integer  specifying  which  production  rule  to  use  in  a  given  moment  of
program’s generation. On many different layers does the « generation » process, as
implemented in Gr.Ev, introduce and implement very original ideas like:  

1. « Degenerate genetic code » -  similary to « nature’s choice » to encode one
amino-acid by means of many different triplets, can one encode application of
a unique production rule by more than one codon.

Figure 5: Sequence of transformations from genotype until phenotype in both Gr.Ev
and Biological systems. Figure reproduced from (O’Neill & Ryan 2003).



2. «Wrapping » -  under  certain conditions can be whole genome « traversed »
more than once during the process of phenotypic expression. Specific codon
can be thus used more than once during the compilation  of single individual.
etc.

Rationale for usage  of such « biologically inspired tricks » is more closely presented
in the work of the founders of Grammatical Evolution field (O’Neill & Ryan 2003) .
They  claim  that  the  focus  on  genotype-phenotype  distinction,  especially  in
combination with   implementation of « degenerate code » and « wrapping » notions,
could result  in  compression of  representation  (& subsequent  reduction of  size  of
program  search-space)  and  account  for  phenomenas  like  « neutral  mutation »,
well-observed in biological systems, whereby a mutation occures in the genotype but
does not have any effect upon the resulting phenotype. Another important advantage
mentioned by O’Neill and Ryan is that Gr.Ev approach makes it very easy to generate
programs in any  arbitrary language. This is due to the versatility and generality of
notion of « grammar ».

When compared with traditional GP technique, Gr.Ev was outperformed in a scenario
when one had to find solutions to problem of symbolic regression. But in more case
complex scenarios like « symbolic integration », « Santa Fe ant trial » or in scenario
where one had to discover a most precise « caching algorithm », Gr.Ev significantly
outperformed GP. Seminal work of (O’Neill and Ryan 2003) presents also some other
interesting examples of practical application of Gr.Ev, for example in the domain of
financial market prediction.

We note that while in many points (« grammar », « evolution ») does the work of
O’Neilly  and Ryan  significantly  overlap  with  ours,  their  aims significantly  differ
from those that shall be presented in our Thesis. More concretely, while Gr.Ev tends
to offer a very general toolbox to generate useful computer programs in arbitrary
programming language  and  used  for  solving  arbitrary  problems,  our  Thesis  shall
deploy the evolutionary  computation machinery to shed some light upon diverse
facets of one  sole problem : that of « Natural Language Development».  

Other  important  difference  between  the  approach of  Gr.Ev and  the  one  we  shall
present  in  our  thesis  is  that  while  in  Gr.Ev,  grammars  are  considered  to  be
« generative devices », i.e. tools used for generation of programs, in our Thesis we
shall use them as both « generative » and « parsing » devices. Another, even more
fundamental difference is due to the fact that while « At the heart of GE lies the fact
that genes are only used to determine which rule is applied when, not what the rules
are. »  (O’Neill  and  Ryan  2003), the  evolutionary  model  of  language-induction
proposed in our Thesis shall aim to determine not only the order of application of the
rules, but also the content of the rules themselves. 

1.7.5.Tierra

Another example of how can one materialise evolutionary principles within an  in
silico  framework is  offered  by  Tierra,  an  artificial  life  simulation  environment



programmed between 1990-2001 by Thomas S. Ray and his colleagues. Since Ray is
an ecologist, his objective was not to develop an EC-like model in order to find or
optimalize solutions of a given problem, rather he aimed to create a system where
artificially  entities  could  spontaneously  evolve,  co-evolve  and  potentially  create
whole artificial ecosystems.

An artificial  entity  in  Tierra’s  framework  (Ray 1992) is  a  program composed of
sequence of instructions, chosen from instruction set containing 32 quite traditional
assembler  instructions  somewhat  tuned  by  the  author  so  that  their  usage  would
facilitate « replication » of the code.  Every artificial entity runs in its own « virtual
CPU »  but  its  code  stays  encoded  in  the  « soup »,  i.e.  piece  of  RAM which  is
potentially read-accessible to all other entities as well. Rare «cosmic ray » mutations
flip the bits of « soup » from time to time, more variation is ensured by bit-flipping
during the procedure whereby the entity replicates (i.e.  copies)  its  code from the
« mother cell » section of the soup to the « daughter cell » section. 

Selection is in certain sense emulated by a so-called Reaper process which tends to
stop the execution of programs which are either too old or contain too much flawed
instructions. Other than that, there is nothing which ressemble the traditional notion
of exogenously defined « fitness function ». For within Tierra, the survival (or death)
of diverse species of programs is a direct consequence of species ability (or inability)
to obtain access to limited ressources (CPU & memory). 

Thus,  after  one  seeds  the  initially  empty  soup  with  a  manually  constructed
individual, containing 80-instructions allowing the individual to copy his code into
the daughter cell of  the memory, after the memory has been filled and the battle for
ressources has started and once the mutation have generated sufficiently enough of
variation,  one  can  observe  the  emergence  of  dozens  of  new forms  of  replicable
programs.  Some  of  them  being  parasites,  some  of  them  being  able  to  create
algorithmic counter-mesures against parasites, one can literally observe an emergence
of artificial yet living ecological system. It is therefore little surprising that Tierra
could  automatically  evolve,  among  others,  an  individual  containing  just  22
instructions, capable of replication. That is, a replicator almost 4 times shorter than
the replicator manually programmed by the conceptor of the system and injected into
initial « soup ».

Currently  the most  famous descendant  of  Tierra  is  an  AVIDA system  (Ofria  and
Wilke 2004). Contrary to Tierra, however, is every AVIDA’s individual encapsulated
within its  own virtual  CPU and memory space.  Tierra’s Darwinian metaphore7 of
computer programs evolving by means of fighting for limited ressources is thus not
so strictly followed.

7 http://life.ou.edu/pubs/tierra/node3.html



2. Language development

Language development (LD) is a constructionist process which endows humans with
the capacity for  transfering of  information to,  and obtaining of  information from,
other humans by means of verbal communication. Term « language development »
shall be used preferably to « language acquisition » in order to mark the fact that the
child not  only passively « acquires » the language from  environmental  input but
rather gradually builds it,  in interaction with its environment. Sometimes the term
« language learning » shall be used as well to denote the same process.

In our Thesis we shall focus only on modeling of development of « first language » ,
i.e. we shall aim to present a computational and evolutionary model of the process by
means of which a human baby learns the language of its closest social environment.

Child’s  closest  social  environment  are  her  parents,  most  notably  her  mother.
Hundreds of studies were conducted to study the nature of « motherese », a special
simplified  language between  mothers  and their  children  (M.  Harris  2013).  While
many studies point in divergent directions, they more or less agree that « Maternal
speech has certain characteristics that  distinguish it  from speech to other adults.
These characteristics are in essence simplicity,  brevity and redundancy. »  What’s
more, it seems to be a well-established fact that there exists a reciprocal link between
the complexity of motherese and complexity of child’s production. In other terms,
mother’s  adjust  their  language  according  to  the  stage  of  child’s  linguistic
development.

Other  studies  also  indicate  an  existence  of  causal  link  between  the  quantity  and
simplicity of motherese utterances on one hand and child’s linguistic development.
More  concretely,  studies  like  that  of   (Furrow  et  al.  1979) indicate  that  child’s
confrontation  with  frequent  and  simple  utterances  facilitates  their  linguistic
development  while  more complex style  can  slow their  development  down.  Other
studies,  like that  of  Ellis & Wells  (1980) precise  that  « children who showed the
earliest  and  most  rapid  language  development  received  significantly  more
acknowledgments, corrections, prohibitions and instructions from their parents ».

This  causal  link  between mother’s  linguistic  productions  and child’s  developping
linguistic competence shall play an important role when we shall discuss the « fitness
function problem ». More concretely, we shall try to integrate into our computational
models an idea that the fitness function evaluating the performance of child’s internal
categorization mechanism and/or candidate grammar shall be external to the child.
The fitness function shall be given by mother’s behaviour.

2.1. Ontogeny of semantic categories (concepts)

Natural  language  furnishes  a  communication  channel  for  exchange  of  meanings.
Meaning (also called « signifié » in traditional linguistics) is intentional, it refers to
some external entity (also called « referent ») . Within the language L, meaning M
can  be  denoted  by  a  token  (also  called  « signifiant »)  and  it  is  by  exchange  of
physical (phonic, in case of spoken language, graphemic in case of written language
etc.)  manifestations  of  these  tokens  that  producer  (speaker|writer)  and  reciever



(hearer|reader) communicate.

Traditionally meaning of  the word,  i.e.  its  « semantics »,  was often considered as
something almost  «sacred »  and impossible  to  formalize  by mathematical  means.
Maximum which could be done, and had been done since Aristotle until middle of
20th century, was to define concept in terms of lists of « necessary and sufficient
features ». Two types of features were considered to be both necessary and sufficient
for  definition  of  majority  of  concepts :  first  specifying  concept’s  genus  (or
superordinated concept) and second specifying the particular property (differentia)
which distinguished the concept from other members of the same genus. Thus, for
example,  « dog »  could  be  defined  as  domesticated  (differentia)  canine  (genus).
Important property of such system of concepts was, that it allowed no ambigous or
fuzzy border cases : the logical « law of excluded middle » guaranteed that all entities
which were not both canines and domesticated at the same time (e.g. a chihuahua
which passed all her life in wilderness) could not be called a dog.

The change of paradigm came slowly with works of late Wittgenstein8 but especially
with empirical studies of Eleanore Rosch (Rosch 1999) who realized that not only are
concepts  often  defined  by  bundles  of  features  which  are  neither  necessary  not
sufficient, but that the degree with which a feature can be associated with a concept
often varies. Subsequently, Rosch has proposed a « prototype theory » of semantic
categories whose basic postulate is,  that some members of  the category (or some
instances of the concept) can be more « central » in relation to the category (resp.
concept) than others. Prototypical theory as well as other both theoretic and empirical
advances, in combination with development of information-processing technologies,
have paved the way to operationalization of semantics which allows us to transform
meanings of words into mathematically commesurable entities.

In computational semantics, meaning of a token X observable within language corpus
C is often characterized as a vector of relations which X holds with other tokens
observable  within  the  corpus.  The  set  of  such  vectors  associated  to  all  tokens
observable in C yields a « semantic space » which is a vector space within which one
can effectuate diverse numeric and|or geometric operations. In short, concepts can be
operationalized as geometric entities (Gärdenfors 2004).

« In the most simple case can be the vector which denotes concept X calculated as a
linear combination of vectors of concepts in context of which X occurs » (Hromada
2013a). This is an algebraic form of famous « distributional hypothesis » stating that
« a word is characterized by the company it keeps » (Z. S. Harris 1954) which can be
considered to be the central dogma of statistical semantics. Distributional hypothesis
is  in  certain a  variation to  an old « associationist »  explanation of  functioning of
mind, which stated  that the essence of mind is somehow related to mind’s ability to
create relations, i.e. associations, between successive mental states.

Both mind’s faculty to create associations -considered by philosophers like Hume and
Locke  to  be  primary faculty  of  mind -   as  well  as  distributional  hypothesis  that

8 « For a large class of cases of the employment of the word ‘meaning’—though not for all—this way can be 
explained in this way: the meaning of a word is its use in the language. » (Wittgenstein 2009)



meaning of symbol X can be defined in terms of meanings of symbols with which X
co-occurs,  can be, we believe, neurologically explained in terms of postulate first
stated by Hebb, the neurologist :

« The general  idea is an old one,  that  any two cells or systems of  cells that  are
repeatedly active at the same time will tend to become 'associated', so that activity in
one facilitates activity in the other. » (Hebb 1964)

One can assume that 1) if not only on single neurons but, mutatis mutandi, also whole
neural circuits are governed by Hebb’s rule, and 2) if distinct words Wx and Wy are
somehow processed and represented by distinct neural circuits Nx and Ny THEN it
shall follow that whenever a hearer shall hear (or speaker shall speak) the two-word
phrase WxWy, the ensemble of material (synaptic?) relations between Nx and Ny shall
get  reinforced.  In  more  geometrical  terms,  on  a  more  « mental »  level,  such  a
« rapprochement »  of  Nx and  Ny would  be  characterized  by  convergence  of  the
geometrical representations of both circuits to their common geometrical centroid.
Thus, after processing the phrase WxWy, the vectorial representations of both Nx and
Ny will be closer to each other than before hearing (or generating) the phrase.

In our Thesis we shall presuppose that an associationist principle, similar to the one
described above, is indeed at work whenever a human mind constructs a concept. We
use term « concept » synonymously to the term « semantic class » : we define both
concept and semantic classes as either subspaces of  « semantic vector space », or as
centroid points  of such subspaces. 

Theoretically, there are multiple (and possibly infinitely) many ways how a cognitive
system  can  internally  represent  an  external  environment  E  (or,  in  case  of  a
computational linguistic agent, a corpus C) as « semantic space » S of dimensionality
D. It is important to notice that the overall partitioning of cognitive system’s vector
space determines how the system classifies the world. If system’s ability to correctly
classify the world determines the reproductive fitness of an organism within which
the  cognitive  system is  embedded,  one  can  state  that  the  topology  of  internally
represented semantic space can quite directly influence organism’s fitness. 

Consider,  for  example,  reproduction  fitness  of  a  member  of  prey  species   which
sometimes mis-classifies a predator species for a sexual mate, and compare it to the
fitness of such a an individual among prey species whose semantic space is optimized
so that the probability of such mis-classification is practically reduced to zero.

A  question  whether  such  « semantic  space  optimization »  occurs  during  the
phylogeny of human species or whether it occurs principially during early years of
child’s developpement (i.e. ontogeny) is a variant of « nature vs. nurture »  (Galton
1875) debate between « nativists » who bet on the «innateness » of certain faculties
of  human  psyche  (c.f.  discussion  above  Evolutionary  Psychology  above);  and
empiricist  who  believe  that  practically  all  knowledge  we  dispose  of  and  use  in
everyday  life  is  acquired  from  environment.  Being  aware  of  results  of  studies
suggesting that children of very small age dispose of knowledge concerning basic
relations among physical objects, or even social and moral skills  (Haidt 2012) we
consider as unwise the tentative to label nativist position as a priori invalid. On the



other  hand,   being  aware  of  the  force  with  which  processes  like  socialisation,
acculturation  and  learning  mould  the  psyche  of  an  adult  individual,  we  shall
definitely consider  as  true the statement  «topology of semantic  space represented
within the cognitive system of  human individual  can be optimized by supervised
assimilation of knowledge encoded in surrounding environment».

Notwithstanding the answer to nature & nurture question  in regards to human faculty
of categorization, the part of our Thesis devoted to «evolutionary models of concept
construction »  shall  simply  suggest  that  something  like  optimization  of  semantic
spaces by means of evolutionary computing is, indeed, possible.

2.2. Ontogeny of formal categories (parts-of-speech)

Words  of  language  can  be  also  partitioned  into  classes  independently  from their
semantic  content.  For  example,  while  there  is  practically  no  manifestly  evident
semantic  feature  between  words  like  « apple »  and « process »,  they can  be  both
considered as belonging to the same category of « nouns ». Principal reason for this
being the fact that within a sentence like, for example, «This apple makes me happy»
one can freely substitute « apple » for « process » and still  obtain a grammaticaly
correct sentence. 

Sometimes the formal categories and semantic categories partially overlap. Such is
the  case,  for  example,  in  many  indo-european  languages  where  one  often  finds
« feminine »  nouns marked  with  markers  of  one  formal  group and  « masculine »
nouns  marked  with  markers  of  other  group.  Even  more  extreme  case  of  such
« overlap » of  semantic  and formal  categorization processes was observed among
Diyarbal aborigines of Australia who use the same determiner « balan » (in certain
sense analogic to German article « die ») in front of all nouns referring to « woman,
fire and dangerous things» (Lakoff 1990). In modern linguistic tradition, however, are
semantic and formal categories considered to be independent from each other.

There exist multiple dimensions along which linguistic tokens can be categorized into
formal classes.  Most  importantly,  the appartenance of  word W to class  C can be
principially infered from : 1) its position in regards to other words 2) its morphology
(i.e.  its internal composition with all  prefixes, word root, suffixes etc.)9.  It is also
important to realize that the same token can belong to many different categories in the
same  time  and  that  the  relations  between  categories  themselves  could  be  either
inclusive,  for « nested » categories,  or « orthogonal ».  Thus,  for nested categories,
appartenance  of  ,  for  example,   german  token  « die  Schönheit »  to  «gender»
subcategory «feminine» immediately implies that it also belongs to part-of-speech
«noun ». On the other hand the sole fact that it is « feminine » does not inform us
whether it could be attributed to « nominative » or « accusative » subsubcategories of
grammatic  subcategory  « case ».  Thus,  subcategories  of  « case »  and  « gender »,
while  being  both  « nested »  within  the  part-of-speech  category  « nouns »  are
orthogonal to each other10. 

9 C.f. (Hromada 2014a) for a comparative study assessing the impact of morphology and word-order features upon 
POS-induction in Bulgarian, Czech, Estonian, Farsi, English, Hungarian, Polish, Romanian, Russian and Slovak.

10  The theoretical importance of existence of this distinction in regards to current formal grammar models of natural



On the most abstract level, linguistic tokens can be categorized into two principal
0-level  formal  categories   of   «functional»  and  « lexical »  items.  The  set  of
grammatical  items  is closed, and it  contains such parts-of-speech as determiners,
conjunctions, pronouns, prepositions. On the other hand, classes of « lexical items »
are opened and include meaning-carrying parts-of-speech like nouns, verbs, adverbs,
adjectives etc. Study by (Shi et al. 1999)offers evidence that even newborn children
(1-3 days old !) react differently to lexical and functional words and are thus  «able to
categorically discriminate these sets of words based on a constellation of perceptual
cues that distinguish them».

Once children are able to distinguish functional words from lexical ones, the process
of ontogeny of formal categories can proceed towards development of part-of-speech
categories. While it would be definitely mistaken to state that all languages of the
world can be partitioned into & mapped upon part-of-speech languages known from
English  or  other  indo-european  languages  (i.e.  noun,  adjectives,  pronouns,  verbs,
adverbs, preposition, conjunction, interjections), linguists generally agree that some
kind of « noun»-ressembling and «verb»-ressembling categories are to be observed in
all systems of human verbal communication.

It is undoubtably the case that between the birth and cca 2-years of age, prototype for
such part-of-speech clusters are being formed within the child’s cognitive system.
This has to be so, around age of 2, children usually start to apply specific rules to
specific items (i.e. start to conjugate the verbs or declinate the nouns). Subsequently,
the  learning  of  much  more  subtle  distinctions,  related  to  nature  of  grammatical
categories like genus, casus, numerus for nouns or modus, tempus, etc. for verbs can
take place. For diverse case studies concerning the acquisition of formal categories,
c.f. (Y. E. Levy, Schlesinger, & Braine, 1988).

Acquisition  of  both  semantic  and  formal  linguistic  categories  is  facilitated  by
so-called « variation sets » (VS). One observes a linguistic variation set whenever the
identific word/cluster  of  words occur in identical  or  slightly variated form within
multiple consequent utterances. Not only nursery rhymes and lullabies are filled with
such « alternations in maternal self-repetitions »  (Hoff-Ginsberg 1986) VS are also
highly frequent in standard « motherese ». In Turkish, for example, VS seem to make
up approximately 20% of child-directed speech (Küntay and Slobin 1996) and very
similar proportions are also reported for English language (Brodsky et al. 2007). 

Note that the notion of « variation set » can be intepreted in terms of evolutionary
theory, given that:

• maternal self-repetition can be intepreted as a form of « replication in time»,
whereby every single utterance is considered to be an independent individual

• alteration of form between subsequent utterances can be interpreted as a result
of a variation operator influencing mother’s production of new sentences

In context of our tentatives to explain language development in terms of evolutionary
theory and suggest its validity by means of evolutionary computation model, we find

languages shall be further extended in fulll version of the Thesis.



this insight « the image that best characterizes the young language leaner is that of a
multilevel analyzer who is working with  several types of analysis simulatenously,
with different degrees of success, as learning progresses » (Levy 1988).

It  may be stated that the reason why categorization processes develop in the first
place is congitive system’s the tendency to optimize its functions and structures. As
Maratsos (1998) put it: « Once the speaker hears just one grammatical use of a new
word which suffices to identify its  membership in a category,  he can refer to the
whole system of rules involving this category »  (Maratsos 1988).

Thus, both semantic as well as formal categories can reduce cost of processing and
storing of information by and within the cognitive system.

2.3. Ontogeny of grammars (grammar induction)

Partitioning  of  words  into  grammatical  categories  can  be  useful  only  if  it  is
accompanied  by  development  of  grammatical  rules  which  combine  members  of
diverse categories in order to produce meaningful sentences. We reiterate that strictly
formally, grammar is defined as the tuple {N, T, P, S} where N denotes the  set of
non-terminals, T the set of terminals, S is a symbol which is member of N and P
denotes the set of production rules that substitute elements of N by elements of N, T
or their combinations. 

Within such formal framework,  the problem of partitioning of  words into diverse
grammatical categories can thought to be as equivalent to problem of discovery of
production rules which 1) associate members of T (words) to members of N (labels of
distinct categories) 2) combine elemets of N in order to produce new elements of  N.
In  fact,  the  problem  of  construction  of  formal  categories  and  discovery  of
grammatical rules are mutually intertwined, some researchers go even so far as to
state : « Category symbols, whether in phrase structure rules or in the lexicon,  are
logically  equivalent  to  the  rules  written  on  them,  and  as  such  are  completely
system-dependent : They are shorthand descriptions of the rule system as a whole. By
anyone’s theory, young children’s linguistic system does not possess all the features of
the endstate system. In other words, their language cannot be describe by the same
grammar as the adult system» (Ninio 1988).

In litterature, development of language is often described as a process composed of
three « stages »  which can be subsequently subdivised in a followin manner :

«Pregrammatical :

a. Rote-learning – item-based acquisition is manifested in the use of formally
unanalyzed units or chunks ;

b.  Initial  modifications  –  formal  alternations  apply  to  a  small  number  of
highly familiar, good exemplars ;

Structure-bound

c.  Interim  schemata –  transitional  or  bridge  strategies  take  the  form  of
productive, but nonnormative rules ;



d.  Grammaticization –  structure-bound  rules  are  those  of  the  endstate  
grammar ;

Discourse-oriented :

e. Convention and variety – grammatical rules are deployed with appropriate,
discourse-sensitive  lexical  restrictions,  stylistic  alternations,  usage  
conventions, register distinctions etc. 

»  (Berman 1988). 

In our Thesis, we shall put aside the intricacies of the third, « Discourse-oriented »
stage and shall  focus on « Pregrammatical » and « Structure-bound » stages. More
concretely, we shall aim to explain acquisition of words and word chunks in phase a.
as the result of the  « crossover » between structures present in the environment
and  structures  represented  within  the  cognitive  system;  while  the  gradual
emergence of  categories and associated production rules which can be observable
during phases b. c. d. shall be explained not only in terms of informatic crossover of
structures present in environment and represented in cognitive system but also as the
result  of  purely  internal  replication,  variation  and  decay,  proper  to  the  cognitive
system,  and  resulting  in  complexity-increasing  « battle  for  resources »  among
structures represented within it.

We are  convinced that  introduction  of  such  «cognitive-system internally  variying
operators »  like  « entropy-induced  decay »  (associated  to  the  phenomenon  of
« forgetting »)  and  « structural  merging »  (associated  to  the  phenomenon  of
« dreaming ») we can, for example, offer a very simple&natural yet effective solution
to a so-called « overgeneralization »11 problem. When it comes to overgeneralization
of grammatical rules, they are often observable in phases c. & d. (i.e. between 2-4
years of age) whenever the child applies the production rule beyond the scope of its
validity. The most famous example of overregularization in English is that practically
all children apply the rule Vpast  → VPresent+ed on all  verbs. Thus, especially during
MLU stage 4 and 512, they generate past participles like « throwed » or « braked »
which are not correct. What is fascinating about the problem of overregularization is
not only that all children shall start to employ irregular forms of past participles so
that errors are not reproduced anymore ; but especially the fact that often, children
used the correct « irregular form » even before (i.e. in one-word phases a. and b.).
Only later did they converge to incorrect overregularization :  « Initially, children’s
uses of -ed past tense are all accurate. They  may say melted or dropped, but not, as
they later do, runned and breaked » (Maratsos 1988) .

We  see  an  important  analogy  between  observations  of  such  sequence  of
correct/incorrect/correct  behaviour,  and general  behaviour  of  evolutionary systems
which  also  often  « reject »  locally  optimal  solutions  and  descend  into  fitness

11 According to the domain (formal, semantic) the problem is also sometimes named as « overextension », 
« overregularization » or the problem of « overinclusive grammar ». 

12 MLU means «Mean Length of Utterance » and is a measure traditionally used in developmental  psycholinguistics
for assessing of child’s linguistic performance at given age. In period when child produces one-word utterances like
« mama » , « tato », MLU is considered to be 1 ; later when child starts to say two-word utterances like « mama
nene », MLU increases towards 2 etc.



landscape valleys in order to subsequently climb towards more optimal states. Thus,
we believe that the term « conflict » present in the following principle can be also
interpreted in evolutionary sense :

« Whenever a newly acquired specific rule (i.e. a rule that mentions a specific lexical
item, like throw, make, allow, report) is in  conflict with previously learned general
rule (i.e. a rule that would apply to that lexical item but also to many others of the
same class), the specific rule eventually takes precedence » (Braine 1971).

McWhinney  uses a similar term « competition » to label its Competition Model of
linguistic competence. « The competition model assumes that lexical elements and
components  to  which  they  are  connected  can  vary  in  their  degree  of  activation.
Activation is passed along connections between nodes. During processing, items are
in competition with one another. In auditory processing …, in allomorphic processing
…, in the processing of role relations, in polysemy …, the item that wins out in a
given competition is the one with the greatest activation » (MacWhinney 1987).

If one could interpret the last phrase of the above citation as « the component which
has the greatest activation has the greatest fitness and thus the highest probability of
being replicated within the cognitve system »,  one could  consider  MacWhinney’s
connectionist model as an evolutionary one, and thus pointing in our direction. But
since that is not the case, and since it seems that MacWhinney’s model does not, at
least  not  explicitly,  involve  any  processes  of  replication,  nor  sources  of  random
variation  nor  does  it  explicitely  work  with  «populations  of  grammars»,  we  are
obliged to look for another theoretical framework which could more easily integrate
such notions.

It  may be the case that a so-called theory of « Grammar Systems » (Csuhaj-Varjú
1994) and « Language Colonies »  (Kelemen and Kelemenová 1992) could furnish
such  a  framework  for  our  tentative  to  explain  ontogeny  of  grammar  in  human
individuum as an evolutionary process. Both will be introduced in part 4 of this text.



3. Computational Models of Text Processing

Majority of models and algorithms presented in this chapter are results of intellectual
work  of  computational  linguists  working  in  domain  of  « Natural  Language
Processing » (NLP). In NLP, one processes data encoding natural (human) languages
with  computational  methods  which  often  involve  machine  learning,  data  mining,
information retrieval,  statistical  inference or  artificial  intelligence (AI)  algorithms.
Among  principal  objectives  of  NLP can  one  include :  1)  to  allow  machines  to
« understand » and|or  work with meanings 2)  to develop an autonomous artificial
agent  (Hromada,  2012)  able  to  pass  the  Turing  Test  (Turing  2008);  and  3)  to
elucidate,  by  means  of  computational  simulations,  possible  ways  how  human
cognitive system treats natural language.

Computational  aim of  our  Thesis  overlaps  especially  with  NLP’s  third  objective.
Such an aim bring with itself many complex problems not easy to tackle and thus, in
order to reduce their amount and complexity we shall reduce the notion of « Natural
Language » to the notion of « text ». It is true that in doing so, we shall completely
ignore the phonetic, phonologic and prosodic aspect of language which has been,
during practically all human history, a principal way how  human speakers encoded
their messages in order to transfer them to other human hearers. It is only during few
centuries that the communication by means of text became prominent and only within
last decades it became dominant, mainly because of increasing role of computers in
our lives. This is at least partially so because computers are essentially machine built
for processing of sequences of discrete symbols and that’s what a text is – a sequence
of discrete symbols. Contrary to flux of spoken language, which is also a sequence,
but  composed  of  units  whose  boundaries  are  often  unclear  and  whose  features
overlap.

3.1. Concept construction

We define the « concept  construction » (CC) problem as an open-class variant  of
« classification »  or  « categorization »  problem.  In  classical,  « closed-class »
categorization  problem,  the  objective  is  to  assign  a  label  which  denotes  the
membership to a category C1 to a set of objects disposing of particular combination of
properties (also called « features » in AI community) ; and assign to categories C2, C3

etc. other objects disposing of different features. Problem of « binary classification »
where  only  two  categories  are  involved,  is  well  studied  and  dozens  of  diverse
algorithms  exists  which  allow  to  train,  in  machine  learning  scenario,  such
classification  models  (« classifiers »)  which  will  subsequently  quite  successfully
classify such objects of the « testing set » which absent in the « training set ». 

In  NLP one often  solves  classification  problem by means  of  so-called  « Support
Vector  Machines »  .  During  the  traininig  of  SVM,  algorithm  tries  to  discover  a
hyperplane «  that has the largest distance to the nearest training data point of any
class » (Vapnik et al. 1997). SVMs belong to group of « linear classifiers » which all
base their classification decisions on linear combinations of characteristics (features)
of objects-to-be-classified. Other machine learning algorithms as diverse as Linear



Discrimant Analysis, Naive Bayes classifiers, logistic regression or perceptron also
belong to group of linear classifiers. 

« Multiple class » variants of these algorithms also exist, allowing for classification
of objects into more than 2 categories. In case of all these algorithms, however, all the
classes-to-be-looked-for  are  known in advance ;  datapoints  in  the training set  are
labeled with labels belonging to a finite set and after the training, during the testing
phase, one’s objective is simply to attribute the correct label to a new object. While
the object itself was most probably not present in the training set and is not « new »,
the finite set of  all  class/category labels-to-be-attributed are well known from the
very beginning of training. In this sense all algorithms mentioned above address the
closed-class variant of classification problem.

On the contrary, in open-class variant of classification problem one can be potentially
asked, in the testing phase, to attribute to an object, which was not present during
training phase, a label which was also not present in the turing phase. In other terms,
in open-class variant of classification problem one does not know in advance neither
the number nor even the nature of categories which are to be constructed. 

3.1.1. Non-evolutionary model of CC

One possible way how one can address problem of Concept Construction – which we
consider  to  be the instance of  an « open-class classification problem » as defined
above – is described as follows: 

1. During  the  (train|learn)ing  phase,  use  the  training  corpus  to  create  a
D-dimensional semantic vector space, i.e. attribute the vectors of length D to
all members of the set of entities (word fragments, words, documents, phrases,
patterns) E which includes all observables within the training corpus

2. During the testing phase :

2.1  characterize  the  object  (text)  O  by  a  vector o⃗ calculated  as  a  linear
combination  of  vectors  of  features  which  are  observable  in  O  and  whose
vectors were learned during the training phase

2.2 characterize labels-to-be-attributed  L1, L2, ... by vectors l⃗1, l⃗2 ...

2.3 associate the object O with the closest label. In case we use cosine metric,
we minimize angle between o⃗ and label vectors, i.e. arg max cos( o⃗ , l⃗x)

Note that in order to make this approach functional, two important conditions have to
be  fulfilled.  Primo,  vectors  associated  to  entities  observables  within  the  training
corpus  must  be  commesurable,  i.e.  have  to  be  of  same  dimensionality  and  be
members of the same vector space. Secundo, the set of all entities E observed during
learning has to be sufficiently exhaustive, so that potentially any novel label or object
which shall appear during the testing phase could be at least partially characterized in
terms of members observables during the training phase.

The first condition of « entity commesurability » is not fulfilled by many vector space
models which often yield multiple spaces for entities of different « types ». In such



models, « word » entities are often encoded as rows of the matrix and « context » or
« documents » entities, i.e. entities within which the words entities occur, are encoded
as column of the same matrix, or are encoded in a completely different matrix. On the
contrary,  algorithms  like  Random  Indexing  (RI)  or  Reflective  Random  Indexing
(RRI)  construct  semantic  vector  spaces from initial  textual  corpora in  a  way that
everything they encounter – be it syllables, words or whole documents – is ultimately
represented as rows of the same matrix.

RI and RRI have also other advantages which are more closely described elsewhere
(Sahlgren 2005; Cohen et al. 2010; Hromada 2013b).  For the purpose of this article
let’s  just  underline  the  fact  that  both  RI  and  RRI  can  be  quite  computationally
efficient since they are able to « project » semantic relations hidden in the text upon a
vector space with restrained dimensionality. Theoretically, this is permitted due to a
so-called  lemma  Johnson-Lindenstrauss  stating  that  « a  small  set  of  points  in  a
high-dimensional space can be embedded into a space of much lower dimension in
such a way that distances between the points are nearly preserved »  (Johnson and
Lindenstrauss 1984)

In  2012,  a  hybrid  system  with  RRI  semantic  component  at  its  very  core,  was
deployed in a francophone datamining competition DEFT2012 (El Ghali et al. 2012).
The goal  of  the competition was to create such an automatic NLP system which
would be able to attribute to scientific articles the same keywords as were attributed
by their authors. In other terms, the goal was to artificially simulate the cognitive

Figure 6: Description of DEFT2012  system for automatic
attribution  of  keywords  to  scientific  articles.  Figure
reproduced from  poster



activity of « attributing a conceptual label » to a scientific article. The tricky thing
about  the  problem  was  that  it  was  not  a  standard  « closed  class »  classification
problem,  but  indeed  an  « open class »  problem since  there  were  many keywords
labels  which have not been present in the training set, yet were to be associated in
the testing scenario. Figure 6 illustrates relations among diverse components of  this
hybrid system.

As may be easily seen, whole « artillery » of diverse NLP tools like POS-taggers,
lemmatizers and chunkers was deployed in order to yield sufficiently exhaustive set
of features from which two distinct semantic spaces were composed by means of
RRI.  Resulting  semantic  spaces  were  subsequently  post-optimized  by  combining
probabilistic Bayesian Networks and production rules.

In  the  first  simpler  task  of  the  competition  DEFT2012,  the  system  has  attained
F-Score  of  94.8%.  The  task  was  simpler  because  a  list  of  candidate  labels  was
furnished within training corpus and subsequently another list of candidate keywords
was furnished with the testing corpus. The system has attained F-score of 58.7% in a
second,  more  difficult  task  where  no  such  lists  were  given.  In  both  tasks  it
outperformed the systems deployed by other 9 participants of the competition.

3.1.2. An evolutionary model of CC

Task  4  of  2014  edition  of  the  datamining  competition  Defi  en  Fouille  Textuelle
(DEFT) was understood as an instance of classification problem with opened number
of classes. More concretely, the challenge was to create an artificial system which
would be able attribute a specific member of the set of all class labels to scientific
articles of the testing corpus. The training corpus of 208 scientific articles presented
in diverse sessions of diverse editions of an annual TALN/RECITAL conference was
furnished to facilitate the training of the model. 

To  solve  this  problem,  we  have  proposed  an  algorithm consisting  of  two nested
components,  as  represented  on  Figure  7.  The  inner  component,  which  we  call
Reflective Space Indexing (RSI) is responsable for construction of the vector space.
Its  input  is  a  genotype,  the  list  of  D features  which trigger  the  whole  reflective
process,  its  output  -a  phenotype -  is  a  D-dimensional  vector  space  consisting  of
vectors  for  all  features,  objects  (documents)  and classes.  The inner  component  is
« reflective » in a sense that it multi-iteratively not only characterizes objects in terms
of their associated features, but also features in terms of associated objects.  RSI's
principal parameter is the number of dimensions of the resulting space (D). Input of
RSI is a vector of length D whose D elements denote D « triggering features », the
initial conditions to which the algorithm is sensible in the initial iteration. After the
algorithm has received such an input, it subsequently characterizes every object O
(document) by  a vector of values which represent the frequency of triggering feature
in  object  O.  Initially,  every  document  is  thus  characterized  as  a  sort  of
bag-of-triggering-features vector. Subsequently, vectors of all features – i.e. not only
triggering ones – are calculated as a sum of vectors of documents within which they
occur and a new iteration can start. In it, initial document vectors are discarded and



new  document  vectors  are  obtained  as  a  sum  of  vectors  of  features  which  are
observable in the document. Whole process can be iterated multiple times until the
system converges to stationary state,  but  it  is  often the second and third iteration
which yields most interesting results.  Note also that what applies for features and
objects applies, mutatis mutandi, also for class labels. 

For purposes of DEFT 2014, every individual RSI run consisted of 2 iterations and
yielded 200-dimensional space. 
 
The envelopping outer component is a trivial evolutionary algorithm whose task was
to find the most « fit » combination of features to perform the classification task. In
every  « generation »,  evolutionary  component  injects  multiple  individual  lists  of
triggering  features  (i.e.  « genomes »)  into  the  inner  component  and  subsequently
evaluates  the  fitness  function  of  resulting  vector  spaces.  It  subsequently  mutates,
selects and crosses-over genotypes which had yielded the vector spaces wherein the
classification was most precise.

The  evolutionary  component  of  the  system  was  conceived  as  a  sort  of  feature
selection mechanism. The objective of the optimization was to find such a genotype –
i.e. such a list of « triggering features » – which would subsequently lead to discovery
of  a  vector  space  whose  topology  would  facilitate  construction  of  a  most
classification-friendly vector space.

Figure 7: Diagram of DEFT2014 model, embedding the construction
of semantic spaces within an evolutionary framework.



As is  common in  evolutionary  computing domain,  whole  process  was  started  by
creation of a random population of individuals. Each individual was fully described
by  a  genome  composed  of  200  genes.  Initially,  every  gene  is  assigned  a  value
randomly  chosen  from the  pool  of  5849 feature  types  observable  in  the  training
corpus. In DEFT2014's Task 4 there were thus 5849200 possible individual genotypes
one  could  potentially  generate  and  we  consider  it  important  to  underline  that
classificatory performance of phenotypes, i.e. vector spaces generated by RSI from
genotypes, can also substantially vary.

What's  more,  our  observations  indicate  that  by  submitting  the  genotype  to
evolutionary pressures -i.e. by discarding the least « fit » genomes and promoting,
varying  and  replicating  the  most  fit  ones  -  one  also  augments  the  classificatory
performance of the resulting phenotypical vector space. In other terms, search for a
vector space1 which is optimal in regards to subsequent partitioning or clustering can
be accelerated by means of evolutionary computation.    

During the training,  evaluation  of  fitness  of  every  individual  in  every generation
proceeded  in a following manner :

• pass the genotype as an input to RSI (D=200, I=2)
• within the resulting vector space, calculate cosines between all document and

class vectors
• attribute N documents with highest score to every class label (N was furnished

for both testing and training corpus) 
• calculate the precision in regards to training corpus golden standard. Precision

is considered to be equivalent to individual's fitness 

Size of population was 50 individuals. In every generation, after the fitness of all
individuals has been evaluated,  40% of new individuals were generated from the old
ones  by means of  a  one-point  crossover  operator  whereby the  probability  of  the
individual to be chosen as a parent was proportional to individual's fitness. For the
rest of the new population, it  was generated from the old one by combination of
fitness proportionate selection and mutation occuring with 0.01 probability. Mutation
was  implemented  as  a  replacement  of  a  value  in  a  genome  by  another  value,
randomly chosen in the pool of 5849 feature types.  Advanced techniques like parallel
evolutionary algorithms or parameter auto-adaptation were not used in the study.

While algorithm succeeded to optimize the vector space generated to training corpus
with precision of 87%. However, the resulting model over-fit the training corpus and
failed to be fully transferable on testing corpus. Possibly due to implementation error
– c.f. (Hromada 2014b) for closer discussion- the model has thus achieved only 27 %
precision when confronted testing data. While being definitely more performant than
a random baseline, our approach was the least performant among 5 participants of
DEFT2014.  



Notwithstanding the failure of our model in DEFT2014, we consider as an important
our observation that « by evolutionary selection of chromosome of features which
initially « trigger » the reflective process one can, indeed, optimize the topology and
hence  the  classification  performance  of  the  resulting  vector  space »  (Hromada
2014b).

3.2. Part-of-speech induction and part-of-speech tagging

The term Part-of-speech-induction (POS-i) designates the process which endows the
human or an artificial agent with the competence to attribute the POS-labels (like
“verb”, “noun”, “adjective”)  to any linguistic token observable in agent’s linguistic
environment.  POS-i  can  be  understood  as  a  « partitioning  problem »  since  one’s
objective  is  to  partition the initial  set  of  all  tokens  occuring in  corpus  C (which
represent agent’s linguistic environment E) into N subsets (partitions, clusters) whose
members  would  correspond  to  grammatical  categories  as  defined  by  the  gold
standard. Because one does not use any information about « ideal » gold standard
grammatical categories during the training phase and uses it only for final evaluation
of  the  performance  of  the  model,  POS-i  is  considered  to  be  an  « unsupervised »
machine learning problem.

POS-i’s « supervised » counterpart is the problem of POS-tagging. In POS-tagging,
one trains the system by serving it, during the training phase, sequence of couples
(word W, tag T) where tag T is the label  denoting the grammatical  category into
which  the  word  W belongs.  POS-tagging  is  thus  simpler  than  POS-i  where  no
information  about  ideal  labels  is  furnished  during  the  learning.  Training  of
POS-tagging  systems  is  of  particular  importance  especially  for  languages  where
many  word  forms  can  potentially  belong  to  many  part-of-speech  categories  (in
English,  for  example,  can almost  any noun play also role of the verb; token like
« still »  can  be  intepreted  as  substantive,  verb,  adjective  and  even  adverb,  its
POS-category being determined by its context). On the contrary, in morphologically
rich languages where such a « homonymy of forms » is present in lesser degrees and
relations between word types and classes are less ambigous, one can often simply
train the POS-tagging system by simply memorizing an exhaustive list  of  (W, T)
couples.

3.2.1. Non-evolutionary models of POS-i

The paradigm currently dominating the POS-i domain was fully born with article
published  by  Brown  et  al.  in  1992.  Brown  and  his  colleagues  have  applied  the
information theoretic notion of « mutual information » :

M (w1w2)=log
Pr (w1 w2)

Pr (w1) Pr(w2)

upon all bigrams (i.e. sequences of two words) composed of tokens w1, w2  and had
subsequently devised a merging algorithm able to group words into classes in a way
that the mutual information within a class would be maximized.



In two decades since publication of study of Brown et al., their approach has inspired
hundreds of studies : be it hidden Markov Models tweaked with variational Bayes
(Johnson,  2007)  ,  Gibbs  sampling  (Goldwater  &  Griffiths,  2007),  morphological
features (Berg-Kirkpatrick, Bouchard-Côté, DeNero, & Klein, 2010; Clark, 2003) or
graph-oriented  methods  (Biemann,  2006)  –  all  such  approaches  and many others
consider co-occurence of words with n-gram sequences to be the primary source of
relevant information for subsequent creation of part-of-speech clusters. In all these
models, one aims to discover the ideal parameters of Markovian statistical models,
often employing a so-called Expectation-Maximization (EM) algorithm to discover
the optimal partitioning. Unfortunately, EM is unable to quit locally optimal states
once they were discovered. Notwithstanding this disadvantage, comparative study of
(Christodoulopoulos et al. 2010) suggests that probabilistic models of part-of-speech
induction can be indeed very performant.

POS-i induction can be also realized by means of k-means clustering algorithm, or
one  of  its  variants.  K-means  algorithm  (Karypis  2002) partitions  N observations,
described as  vectors  in  D-dimensional  space,  into K clusters  by attributing every
observation into the cluster with the nearest centroid (i.e.  mean). If  one considers
these centroids to denote  prototypes of the categories in center of which they are
located,  then  one  can  consider  the  k-means  algorithm  to  be  consistent  with
« prototype  theory  of  categorization »,  as  proposed  by  Rosch.  Table  1  illustrates
simple K-mean partitioning of tokens present in English version of Orwell’s 1984. 

Table 1. K-means clustering of tokens according both suffixal and co-occurence
informations. Table partially reproduced from (Hromada 2014c)

Noun Verb
0 10 3
1 568 67
2 97 668
3 13 1011
4 1173 67
5 608 958
6 1977 97

In this example case we have clustered all tokens observable in the corpus into 7
clusters according to features both internal to the token – i.e. suffixes – and external –
i.e. co-occurrence with other tokens.  Note that even such a simple model where no
machine  learning  or  optimization  were  performed,  K-means  algorithm somehow
succeeds to distinguish verbs from nouns. As is shown in the Table 1, whose columns
represent the “gold standard” tags and rows denote the artificially induced clusters,
even such a naïve computational model has assigned 83.6% of nouns to clusters 1, 4
and 6 while assigning 91.8% of verbs into clusters 2, 3 and 5. 

3.2.2. Evolutionary models of POS-i & POS-t

Usage of evolutionary computing in NLP is - in comparison to other methods like
neural networks, Hidden Markov Models, Conditional Random Fields or SVMs –



still very rare. This is also the case to NLP’s sub-problem of part-of-speech tagging
and thus we are  aware of  only one tentative to use genetic algorithms to train a
part-of-speech tagger :

In  his  (Araujo  2002) proposal,  Araujo  describes  a  system  of  POS-t  involving
crossover  and  mutation  operators.  What  is  particularly  interesting  about  Araujo’s
system is that separate evolution process is run for every separate sentence of the
test  corpus.  Training  corpus,  on  the  other  hand,  serves  mainly  as  a  source  of
statistical information concerning co-occurrences of diverse words and tags in diverse
word & tag contexts. This  information concerning the « global » statistic properties
of the training corpus is later exploited in computation of fitness. 

Let’s take, for example, the phrase « Ring the bell ». Since words like « ring » and
« bell » are in English sometimes used as verbs, and sometimes used as nouns, such a
sentence can be tagged at least in 4 different ways :

N D13 N

V D V

N D V

V D N

Such sequences of tags yiels individual members of Araujo’s initial  population of
chromosomes. In languages like English where almost every word can be attributed
to more than one POS category & the number of possible tag sequences therefore
increases with length of the phrase-to-be-tagged, one will be most probably obliged
to  randomly  choose  such  initial  individuals.  Fitness  of  every  individual  possibly
tagging the sentence of n words is subsequently calculated as a sum of accuracies of
tags (genes) on position i :

∑
i=0

n

f (gi)

Accuracy gi of an individual gene is calculated as :

f (gi)=log(
context i

all i

)

whereby values of contexti and alli  are extracted from the training table which was
constructed  during  the  training  phase  and  represent  the  overall  frequency  of
occurrence of word wi within specific (contexti) and all (alli) contexts.

Once fitness  is  evaluated,  fitness-proportional  crossing-over  (50%)  and mutation
(5%) is realized. Notwithstanding the fact that Araunjo doesn’t seem to have used any
other  selection  mechanism,  in  less  than  100  generations,  populations  seemed  to
converge into sequence of tags which were more than 95% correct in regards to gold
standard. This is a result comparable to other POS-tagging systems but with lesser
computational cost. It is also worth noting that Araujo’s experiments indicate that
working solely with contextual window WL, W, WR , i.e. just looking one word to the

13 We denote, by a non-terminal symbol D, the category of « determiners » into which belongs also article « the ».



left and one word to the right, seems to yield, in case of POS-tagging of English
language higher scores than extracting data from larger contextual spans. 

When  it  comes  to  the  « unsupervised »  variant  of  the  POS-t  problem,  id  est  the
problem of Part-of-speech induction, up to this date there have been -as far as we
know  -  no  tentatives  to  address  the  POS-i  problem  by  means  of  evolutionary
computing. For this reason, and for the reason that we see strong analogies between
problems of CC and POS-i,  our Thesis shall aim to solve this problem with a model
similar to the one which we have presented in part 3.1.2 of this work.

3.3. Grammar induction

Input  of   Grammar  Induction  (GI)  process  is  a  corpus  of  sentences  written  in
language L, its output is, ideally a grammar (i.e. a tuplet G={S,N,T,P} as defined in
above  chapters)  or  at  least  a  model  able  to  generate  language  sentences  of  L,
including such sentences that were not present in the initial training corpus. 

The nature of resulting grammar is closely associated to the content of the initial
corpus as well as to the nature of the inductive (learning) process. According to their
« expressive power », all grammars can be located somewhere on a « specificity –
generality »  spectrum.  On one  extreme of  the  spectrum lies  the  grammar  having
following production rules :

1 → 2*

2 → a | b | c … Z

whereby * means « repeat as many times as You Want ». This very compact grammar
can potentially generate any text of any size and as such is very general. But exactly
because  it  can  accept  any  alphabetic  sequence  and  thus  does  not  have  any
« discriminatory power » whatsoever, is  such a grammar completely useless as an
explication of system of any natural language.

On the other extreme lies a completely specific grammar which has just one rule :

1 → <corpus>

This grammar contains exactly what corpus C contains and is thus not compact at all
(it  is  even  two  symbols  longer  than  C).  Such  a  grammar  is  not  able  to  encode
anything else than the sequence which was literally present in the training corpus and
is therefore also useless for any scenario were novel sentences are to be generated (or
accepted).

The objective of GI process is to discover, departing solely from corpus C (which is
written in language L), a grammar which is neither too specific, nor too general. If it
is too general, it  shall « overgeneralize », i.e. shall be able to generate (or accept)
sentences which aren’t be considered as grammaticaly correct by common speaker of
L. If it is too specific, it shan’t be able to represent all sentences contained in C or, if
it shall, it shan’t be able to generate (or accept) any sentence which is considered to
be sentence of L but was not present in the initial training corpus C.



3.3.1. Non-evolutionary models of grammar induction

One  of  the  first  serious  computational  models  of  GI  is  a  « Syntagmatic  –
Paradigmatic »  (SNPR)  model  presented  in  (Wolff  1988).  Its  core  algorithm  is
presented in Table 2.

TABLE 2 Outline of Processing in the SNPR Model (reproduced from Wolff, 1988)

1. Read in a sample of language.
2. Set up a data structure of elements (grammatical rules) containing, at this stage, only the

primitive elements of the system.
3. WHILE there are not enough elements formed, do the following sequence of operations

repeatedly:
BEGIN

3.1 Using the current structure of elements,  parse the language sample,  recording the
frequencies of all pairs of contiguous elements and the frequencies of individual
elements. During the parsing, monitor the use of PAR elements to gather data for
later us in rebuilding of elements.

3.2 When the sample has been parsed, rebuild any elements that require it.
3.3 Search amongst the current set of elements for shared contexts and fold the data

structures in the way explained in the text.
3.4 Generalize the grammatical rules.
3.5 The most frequent pair of contiguous elements recorded under 3.1 is formed into a

single  new  SYN  element  and  added  to  the  data  structure.  All  frequency
information is then discarded.

END

We consider the SNPR model to be of particular importance because of its aim to
explain the process of Grammar Induction as a sort of cognitive optimization : « The
central idea in the theory is that language acquisition and other areas of cognitive
development are, in large part, processes of building cognitive structures which are
in some sense optimal for the several functions they have to perform » (Wolff 1988).
Wolff  also  associates  his  « cognitive  optimization  hypothesis »  with  a  «law  of
cumulative complexity » postulated in a study (Brown 1973) which is considered to
be tha big classics of language development litterature :  «if one structure contains
everything that another structure contains and more then it will be acquired later
than that other structure » (Wolff 1988).

Grammar  resulting  from  such  a
contact  between  language  sample
and  SNPR  inducing  mechanism  is
displayed on figure 7.

In  Wolff’s  theory  optimalization  is
further  understood  as  compression.
Within  the  SNPR  model  is  such
compression realized  in  part  3.5 of
his  algorithm,  where  the  most
frequent pair of contiguous elements

Figure 7: Grammar induced by SNPR model.   Figure  
reproduced from (Wolff, 1988)



(either terminals or non-terminals) is substituted for a new non-terminal symbol. For
this reason, the size of grammar able to generate the initial language sample ideally
decreases with every cycle of model’s « while » loop until the process converges to
state where there is no redundancy to « compress ».  

Wolff  proposes  that  Grammar  Induction is  a  process  which should  maximize  the
coding  capacity  (CC)   of  the  resulting  grammar  while  minimizing  its  size14.  He
defines the ratio between grammar’s CC/MDL to denote grammar’s efficiency and it
may be the case that within a more evolutionary framework where one would work
with populations of grammars, a very similarly defined notion of efficiency could be
used  as  the  core  component  of  the  fitness  function.  Unfortunately,  Wolff’s  1988
SNPR model is not evolutionary since it does not involve any stochastic factors nor
notion of multiple candidate solutions. Wolff’s SNPR is simply confronted with the
language  sample,  deterministically  compresses  redundancies  in  a  way  that  can
sometimes ressembles human grammar (and sometimes not), gets subsequently stuck
in local optimum and there’s no way how to get out of it.

Another  famous model of GI is that of  (Elman 1993). Contrary to  Wolff’s algorithm
which is  principially  « symbolic »,  is  Elman’s  model  « connectionist »  one.  More
concretely, Elman had succeeded to train a simple recurrent neural network which
was «trained to take one word at a time and predict what the next word would be.
Because the predictions depend on the grammatical structure (which may involve
multiple  embeddings),  the  prediction  task  forces  the  network  to  develop  internal
representations which encode the relevant grammatical information. » (Elman 1993).

The most important finding of Elman’s study seems to be the evidence for a so-called
« less is more hypothesis » (Newport 1990) which Elman himselfs labels with terms
« importance of starting small » : « Put simply, the network was unable to learn the
complex  grammar  when  trained  from the  outset  with  the  full  “adult”  language.
However,  when  the  training  data  were  selected  such  that  simple  sentences  were
presented first, the network succeeded not only in mastering these, but then going on
to master the complex sentences as well. » (Elman 1993).  Something similar occured
also when he tuned the capacity of « internal memory » of his networks rather than
the corpus itself. Elman observed: « If the learning mechanism itself was allowed to
undergo  “maturational  changes”  (in  this  case,  increasing  its  memory  capacity)
during learning, then outcome was just as good as if the environment itself had been
gradually complicated. » 

Thus, not only results of Elman’s computational model point in the same direction as
many  developmental  and  psycholinguistic  studies  of  « motherese »  (c.f.  citations
from Harris  in  part  2  of  this  work) ;  they  also  show  the  importance  of  gradual
physiological changes for ultimate mastering of maternal language. He goes even so
far to state that prolonged infancy of human children can possibly go hand in hand
with the fact that only humans develop language in an extent we do : «In isolation,

14 In current research, it is more common to speak about grammar’s Minimal Description Length (MDL). 



we see that  both learning and prolonged development have characteristics which
appear to be undesirable. Working together, they result in a combination which is
highly adaptive» (Elman 1993).

Notwithstanding these interesting results which are not to be underestimated, we see
two  disadvantages of Elman’s approach. Primo, as is often the case for connectionist
neural networks,  his resulting model is  somewhat difficult  to interpret :  given the
training constraints mentioned above, the network seems to predict quite well the
next word in the phrase, but it is not evident why it does what it does. Elman himself
dedicates major part of his article to descriptions of his tentatives to understand how
his « blackbox » functions. Secundo, Elman confronted his model only with artificial
corpora, i.e.  corpora generated from manually created grammars.  Thus,  his model
accounts only for a limited subset of properties of one language (English) and as such
is still quite far from full-fledged solution to problem natural language’s GI.

Last  model  we  present  in  this  brief  overview,  called  « Automatic  Distillation  of
Structure » (ADIOS) seem to be in lesser extent touched by this second disadvantage
since as its authors state : « In grammar induction from large-scale raw corpora, our
method  achieves  precision  and  recall  performance  unrivaled  by  any  other
unsupervised algorithm. It  exhibits good performance in grammaticality judgment
tests (including standard tests routinely taken by students of English as a second
language) and replicates the behavior of human subjects in certain psycholinguistic
tests of artificial language acquisition. Finally, the very same algorithmic approach
also is proving effective in other settings where knowledge discovery from sequential
data is called for, such as bioinformatics. » (Solan et al. 2005).

ADIOS is a graph-based model. It considers the sentences to be a path in the directed
pseudograph  (i.e.  loops  and  multiple  edges  are  allowed),  each  sentence  being
delimited by special « begin » and « end » vertices. Every lexical entry (i.e. a word
type) is also a vertex of the graph, thus if more than two sentences share the same
word X, they cross themselves in the vertex VX ; if they contain the same subsequence
XY, their paths share the common subpath (edge) VXVY etc. 

Authors of ADIOS describe their algorithm as follows : « The algorithm generates
candidate patterns by traversing in each iteration a different search path (initially
coinciding with  one  of  the  original  corpus  sentences),  seeking  subpaths  that  are
shared by a significant number of partially aligned paths. The significant patterns (P)
are selected according to a context-sensitive probabilistic criterion defined in terms
of local flow quantities in the graph...Generalizing the search path, the algorithm
looks for an optional equivalence class (E) of units that are interchangeable in the
given context [i.e., are in complementary distribution]. At the end of each iteration,
the most significant pattern is added to the lexicon as a new unit, the subpaths it
subsumes are merged into a new vertex, and the graph is rewired accordingly... The
search for patterns and equivalence classes and their incorporation into the graph
are repeated until no new significant patterns are found. »  (Solan et al. 2005).



In other  terms,  ADIOS starts  with a so-called Motif  Extraction (MEX) procedure
which looks for bundles of graph’s subpaths which obey certain conditions. Once
such « patterns » are found, they are subsequently « substituted » for non-terminal
symbols  and  a  graph  is  « rewired »  to  incorporate  such  newly  constructed
non-terminals. Such a « pattern distillation » procedure of generalization bootstraps
itself  until  no further  rewiring is  possible.  Output  of  the  whole process  is  a  rule
grammar combining patterns (P) and their equivalence classes (E) into rules, able to
generate even phrases which weren’t present in the initial corpus. Example of how
ADIOS progressively  discovers  more and more  abstract  combinatorial  patterns  is
presented on Figure 8.

ADIOS is undoubtably one of the most performant GI systems which currently exist.
It  combines  both  statistic,  probabilistic  and  graph-theory  notions  with  notion  of
rule-based grammar and as such is also of great theoretical interest.  On the other
hand,  ADIOS  does  not  involve  any  source  of  stochasticity,  seems  to  be  purely
deterministic and as such incapable to deal with highly probable convergence towards
locally  optimal  grammars.  In  confrontation  with  some  partial  corpora  this  may
possibly not cause any problems but,  we predict,  without any stochastic variation
whatsoever, ADIOS could not account for more than few « advanced » & real-life
properties of natural languages and as such shall possibly share the destiny of SNPR
model.

Figure 8: Equivalence classes and production rules induced from English language samples by 
ADIOS algorithm. Figure reproduced from (Solan et al. 2005)



3.3.2. Evolutionary models of grammar induction

Multiple authors have proposed to solve the GI problem with different variants of
evolutionary computinng - in following paragraphs we shall describe five different
approaches: 

1) Tomita’s (1982) hill-climbing induction of finite state automata
2) Dupont’s (1994) GIG method for inference of regular languages
3) Evolution of stochastic Context-Free Grammars as presented by Keller & Lutz 

(Keller and Lutz 1997)
4) Evolutionary method of  (Aycinena et al. 2003) inducing grammars from POS 

tags of nine different English language corpora
5) Genetic algorithm of Smith & Witten (Smith and Witten 1995) for inducing a 

LISP s-expression grammar from a simple corpus of English sentences

Tomita’s 1982 paper can be considered to be
one  of  the  first  empiric  studies  of
grammatical inference. The study focused on
inference of grammars of 14 different regular
languages – which are often called « Tomita
languages »  in  subsequent  litterature  –  by
means of  deteministic  finite  state  automata.
Tomita had first encoded any possible finite
state  machine  with  n  states  in  a  following
manner :

( ( A1, B1, F1) (A2 , B2 , F2 ) . . . . (An , Bn , Fn ))

whereby every block « (Ai, Bi, Fi) corresponds to the state i, and Ai and Bi indicate
the destination states of the 0-arrow and the 1-arrow from the state i, respectively. If
A or B is zero, then there is no 0-arrow or 1-arrow from the state i, respectively. F i

indicates whether state i is one of the final states or not. If Fi is equal to 1, the state i
is one of the final states. The initial state is always state 1 »  (Tomita, 1982). 

Thus, for example, the string ((1 2 1 ) ( 3 1 1 ) ( 4 0 0 ) ( 3 4 1 )) encodes the finite
state automaton illustrated on figure 9.

Such encoding  allowed  Tomita  to  subsequently  apply  his  hill-climbing  approach.
Hill-climbing  can  be  considered  to  be  a  precursor  to  more  extended  genetic
programming,  since  it  employs  both  random  mutations  to  explore  surounding
search-space and sort of selection algorithm which always prefers to use, in following
iteration of the algorithm, such individual solutions for which the value of evaluation
function E increases. Tomita’s definition of E is very simple: 

E = r - w

Figure 9: Finite state automaton matching
all  strings over (1 + 0)*  without an odd
number  of  consecutive  0's  after  an  odd
number  of  consecutive   1's.  Figure
reproduced from (Tomita 1982)



« where r is the number of strings in the right-list accepted by the machine, and w is
the number of  strings  in  the  wrong-list  accepted  by  the machine».  Right-list  is  a
positive sample corpus while wrong-list is the negative sample. Thus, if a random
mutation transforms an individual Xn into individual Xn+1 so that E(Xn+1) > E(Xn), -
i.e. if an automaton is discovered which matches more positive sequences, or less
negative sequences, or both -  it will be Xn+1 which will be mutated in the next cycle
of the algorithm.

Tomita’s approach cannot be considered to be fully evolutionary because he haven’t
used  populations  nor  did  he  employed  any  kind  of  cross-over  operator.  For  this
reason, Tomita’s regular grammar-infering algorithm did sometimes got stuck in local
maxima from which there was no way out. Notwithstanding this small imperfection –
of which Tomita himself was well aware – his work served, and still serves, the role
of an important hallmark on the path to full-fledged GI.

Dupont (1994), for example, has also focused his study on induction of 15 different
regular Tomita languages. In his formally very sound work, he defines the problem of
inference of regular languages as a problem of finding of optimal partition of a state
space  of  a  finite  « maximal  canonical  automaton »  (MCA)  able  to  accept  the
sentences from positive sample. Fitness function takes into account also the system’s
tendency  to  reject  the  sentences  contained  in  the  negative  sample.  By  using  a
so-called « left-to-right  canonical  group encoding »,  Dupont  succeeds to represent
diverse individuals automata in a very concise way which allows him to subsequently
evolve them by means of structural mutation («the structural mutation consists of a
random selection of a state in some block of a given partition followed by the random
assignment of this state to a block », e.g. MUTATE({{1,3,5},{2},{4}}) → {{1,5},
{2,3},{4}}) and structural crossover («the structural crossover consists of the union
in both parent partitions of a randomly selected block », for example CROSS({{1,4},
{2,3,5}},{{1,3},{2},{4},{5}}) →  {{1,3,4},{2,5}},{1,3,4},{2},5}).

Because « the search space size dramatically increases with the size of the positive
sample,  making  the  correct  identification  more  difficult  when  we  have  a  larger
positive information on the language », Dupont has also proposed an incremental
procedure allowing to start the search process from smaller yet pertinent region of the
search  space.  Procedure  goes  as  follows :  « first  sort  the  positive  sample  I+ in
lexicographical  order.  Consequently, the  shortest  strings  are  first  taken  into
account. Starting with the first sentence of I+, we construct the associated MCA(I+)
and we search for the optimal partition of its state set under the control of the whole
negative sample I_. Let A1 denote the derived automaton with respect to this optimal
partition. Let snext denote the next string in I+. If snext is already accepted by A1, we skip
it. »  (Dupont 1994). Otherwise, the aumaton A1 is be extended so that it can cover
also snext. The search under the control of whole negative sample is then restarted and
whole  process  is  repeated  until  all  sentences  from  positive  sample  have  been
considered.



With  population  size  of  100  individuals,  maximum number  of  2000  evaluations,
crossover  rate  0.2,  mutation  rate/bit  0.01  and  semi   incremental  procedure
implemented,  Dupont’s  approach  have  attained,  in  average,  classification  rate  of
94.4%. For five among fifteen Tomita’s languages, grammars were constructed which
attained 100% accuracy (i.e. accepted all sentences from positive sample and rejected
all  strings  from  negatives  sample).  Results  have  also  indicated  that  if  ever  the
semi-incremental procedure is applied, the sample size has positive influence upon
the accuracy of infered grammars – bigger sample yields more accurate grammars.

While Tomita’s results indicate and Dupont’s results further confirm the belief that
induction of grammars by means of evolutionary computing is a plausible thing to do,
they do so only in regards to most  similar  type of  grammars – the regular  ones.
Grammars of natural languages, however, are definitely not regular languages and
models  of  GI  of  more  expressive  « context  free »  (CFG) or  « context  sensitive »
grammars are needed. 

Keller  and Lutz employed a genetic  algorithm to evolve parameters  of  stochastic
context-free  grammars  (SCFG)  of  6  different  languages.  SCFGs  are  similar  to
traditional  CFGs15,  but  extended  with  probability  distribution,  so  that  there  is  a
probability  value  in  the  range  [0,1]  associated  to  every  production  rule  of  the
grammar. These values are called SCFG’s parameters and these are the values which
the algorithm of Keller & Lutz aims to optimize by means of GAs. Their approach
involves following steps :

« 
1. Construct a covering grammar that generates the corpus as a (proper) subset.
2. Set up a population of individuals encoding parameter settings for the rules of

the covering grammar.
3. Repeatedly  apply  genetic  operations  (cross-over,  mutation)  to  selected

individuals in the population until an optimal set of parameters is found.
» (Keller and Lutz 1997)

Their fitness function F(G) is based on idea of Minimal Description Length (MDL).
More formally, Keller & Lutz aimed to maximize:

F (G)=
K c

L(C∣G)+ L(G)

by minimizing the denominator which is defined as a sum of number of bits needed
to encode the grammar G (L(G)) plus the number of bits needed to encode corpus G,
given  the  grammar  G  (L(C|G)).  Numerator  Kc is  just  a  corpus  dependent
normalization factor assuring that the value of fitness shall be in range [0,1]. When

15 « In formal language theory, a context-free grammar (CFG) is a grammar inn which every production rule is of the 
form V → w, where V is a single non-terminal symbol, and w is a string of terminals annd/or non-terminals. The 
term « context-free » expresses the fact that non-terminals can be rewritten without regard to the context in which 
they occur » (Choubey and Kharat 2009)



confronted with positive samples of cca 16000 strings (typically of length 6 or 8) of 6
different context-free languages :

1. EQ : language of all strings consisting of equal numbers of as and bs
2. language anbn(n≥1)

3. BRA1 : language of balanced brackets
4. BRA2 : balanced brackets with two sorts of bracketing symbols
5. PAL1 : palindromes over {a,b}
6. PAL2 : palindromes over {a,b,c}

their  algorithms  have  converged,  in  majority  of  cases,  to  such  combinations  of
parameters of  their  SCFGs which had allowed them to accept more than 95% of
strings presented in the  positive sample. Such results indicate that genetic algorithms
can  be  used  as  a  means  for  unsupervised  inference  of  parameters  of  stochastic
context-free grammars. Note that Keller & Lutz confronted, during both testing and
training,  their algorithm only with positive sample. While doing so for training is
justifiable - since the objective of their study was to study whether grammars can be
infered solely from positive  evidence  – not  doing so during testing phase makes
uncertain the extent to which their infered grammars overgeneralize. 

Another huge disadvantage in regards to aims of our Thesis is the simple fact that
their  approach  also  seems  to  be  very  costly  (« number  of  parses  that  must  be
considered increases exponentially with the number of non-terminals »). And since
they  confronted  their  algorithms  only  with  corpora  composed  of  sentences  of
artificial  and not  natural  languages,  we shall  not  try  to  imitate  their  approach of
« tuning SCFG parameters » in our Thesis.

By being context-free and not simply regular, the grammars studied by Keller & Lutz
or (Choubey and Kharat 2009) could be considered to be more similar to grammars
of  natural  languages.  Nonetheless,  languages  composed  of  palindromes  and
sequences of balanced brackets are still far way off from natural languages and the
question « in what extent are results concerning GI  of artificial languages applicable
to GI of  natural  languages ? » is  far  from being answered.  Rather  than trying to
answer it, we proceed now to discussion of two approaches where evolutionary GIs
have been applied upon natural language sentences :

The first method, proposed in  (Aycinena et al. 2003) has focused on induction of
CFG grammars from nine different part-of-speech tagged natural language corpora.
Sentences contained in these corpora, composed thus of sequences of part-of-speech
tags (c.f.  Section 3.2)  were used as positive examples,  while randomly generated
sequences of POS-tags have yielded negative examples. 

Initial  population  was  composed  of  linear  encodings  of  randomly  generated
context-free grammars, for example the string SABABCBCDCAE would represent
this CFG :



S → AB
A → BC
B → CD
C → AE

During the evaluation of individual grammar G, one would first try to parse both 
positive and negative corpora with the grammar G and subsequently calculate the 
final fitness by applying the following formula :

F(α)=γ
max(0,∣α∣−¿P∣)C (α)−δ I (α)

« where P is the set of preterminals, C(α) is the number of parsed sentences from the
corpus, I(α) is the number of sentences parsed from the randomly generated corpus,
δ is the penalty associated with parsing each sentence in the randomly generated

corpus,  and γ is  the  discount  factor  used  for  discouraging  long  grammars »
(Aycinena et al. 2003)

In their study, Aycinena had placed randomly generated population of 100 individual
grammars on a two-dimensional 10 x 10 torus grid. Subsequently, they had applied a
following select-breed-replace strategy :
« 

1. Select and individual randomly from the grid
2. Breed that individual with its most fit neighbor to produce two children
3. Replace the weakest parent by the fittest child » (Aycinena et al. 2003)

In their framework, «cross-over is accomplished by selecting a random production in
each parent. Then a random point in these productions is selected and cross-over is
performed, swapping the remainder of the strings after the cross-over points». Every
symbol of a resulting string can be subsequently mutated (mutation rate=0.01). «A
mutation  is  simply  the  swapping  of  a  non-terminal  or  pre-terminal  with  another
non-terminal or pre-terminal » (Aycinena et al. 2003)

Figure  10  shows the  number  of  generations  each  run  was  able  to  complete,  the
grammar G that last evolved, the percentage of positive examples parsed by G, the
percentage of negative examples parsed by G and G’s fitness.

While results displayed above may seem encouraging authors, have noticed that in
majority of cases, their approach « gives a grammar that is very capable of detecting
whether  a  sentence  is  valid  in  English,  but  it  has  not  learned  much  English
structure ». In other terms, Aycinena et al. have succeeded to breed grammars which
have certain discriminatory power but are practically useless as models of English
language. They go even so far as to state, in the ultimate paragraph of their work that
« It is still possible that English grammar is too complex to be learned from a corpus
of words » and that other external clues are necessary for successful GI of English.



The big disadvantage of above-mentioned algorithm was also the fact that its input
were  sequences  of  already  attributed  POS-tags  and  not  sequences  of  words
themselves. Thus, even if the  approach would discover some interesting grammars, a
reproach could be made and justified that in fact it only re-discovered the rules of the
tagging system which was used in the first place. From perspective of our Thesis,
another disadvantage of Aycinena et al.’s approach is related to the fact that their
approach is anything but model of grammar development in human child. For it is
evident  (c.f.  Section  2)  that  children  learn  the  grammar  of  their  language  in  an
incremental  fashion  –  they  are  not  confronted  with  whole  corpus  from the  very
beginning.  Nor  does  the  corpus  stay  identic  after  each  iteration  of  the  learning
process. On the contrary : as child grows, its linguistic environment - the corpus –
also grows. Both in length and complexity.

An  interesting  evolutionary  approach  of  GI  which  both  tries  to  create  own

Figure 10: Grammars evolved from nine different POS-tagged corpora. Figure 
reproduced from (Aycinena et al., 2003).



non-terminal  categories  and  also  takes  such  « incrementality »   into  account  is
presented  in  the  work  of  (Smith  and  Witten  1995).  In  their  scenario,  candidate
grammars are evolved after presentation of every new sentence. Grammars have form
of LISP s-expressions whereby AND represets a concatenation of two symbols (i.e. a
syntagmatic node) and OR represents a disjunction (i.e. a paradigmatic node). Whole
process is  started as follows :  « The GA proceeds from the creation of  a random
population of diverse grammars based on the first sample string. The vocabulary of
the expression is added to an initially empty lexicon of terminal symbols, and these
are  combined  with  randomly  chosen  operators  in  a  construction  of  a  candidate
grammar...If the candidate grammar can parse the first string, it is parsed into the
initial population ». Figure 11 displays two sample grammars for the sentence « the
dog saw a cat ».

S-expression sequences representing individual grammars are subsequently mutated.
Couple of  parent grammars can also switch their nodes – probability of being chosen
for such cross-over is inversely proportional to grammar’s size : shorter grammars are
prefered.  Cross-over  is  non-destructive,  parents  thus  also  persist.  The  events  of
reproductions are grouped in cycles, at the end of each cycle, population of candidate
grammars is confronted with new sentence from sample of positive evidence.

In their article  (Smith and Witten 1995)show, how after presentation of sentences :
«the dog saw a cat », « a dog saw a cat », « the dog bit a cat », « the cat saw a cat »,
« the  dog  saw a  mouse »  and  « a  cat  chased  the  mouse »  their  system naturally
converged to a grammar which had quite correctly subsumed determiners like « a »,
« the » under one group of OR nodes, verbs like « chased », « saw », « bit » under
another, and nouns like « dog », « cat », « mouse » under yet another. The grammar
which  they  finally  obtain  is  not  ideal  but,  as  they  argue,  it  could  get  better  if
confronted with new sentences. «It  is an adaptive process whereby the  model is
graudally conditioned by the training set. Recurring patterns help to reinforce partial
inferences, but intermediate states of the model may include incorrect generalizations
that can only be eradicated by continued evolution. This is not unlike the developing
grammar of a child which includes mistakes and overgeneralisations that are slowly

Figure 11: Two simple grammars covering the sentence "the dog saw a cat". 
Figure reproduced from (Smith & Witten, 1995)



eliminated  as  their  weaknenesses  are  made  apparent  by  increasing  positive
evidence ». (Smith and Witten 1995)

While strongly agreeing with above citation, we nonetheless cannot ignore certain
drawbacks  of  Smith  &  Witten’s  approach.  Most  importantly,  by  using  LISP’s
s-expressions as a way of representing their grammars, they ultimately have to end up
with highly bifurcated binary trees (since arity of AND|OR operators is 2). Thus, one
can easily subordinate two non-terminals to one terminal (e.g. OR(cat,dog)), but in
case  of  three  subordinated  terminals,  one  is  obliged  to  use  complex   expression
involving three non-terminals (e.g. OR(OR(cat,dog),OR(mouse,NULL)). Therefore,
in  such  an  s-expression based representation,  is  any class  having more  than  two
members  neccessarily represented by a longer sequence → is more prone to mutation
→ is highly « handicapped » in regards to much shorter expressions subordinating
just two nodes. 

Another drawback of Smith & Witten’s work which cannot be ignored is related to
the fact that while they used English language sentences to train their system, the
sentences were very simple and the relevance of their findings to GI of « natural »
English is more than disputable. In fact, they seem to achieve, with quite complex
evolutionary  machinery,  even  less  than  Wolff’s  deterministic  SNPR  model  have
achieved  almost  a  decade  before.  Notwithstanding  these  two  drawbacks  we
nonetheless  consider  as  particularly  inspiring  their  approach  aiming  to  solve  the
problem  of  GI  of  natural  languages  by  uniting,  in  one  framework,  the  notions
adaptability, evolvability and statistical sensitivity to recurring patterns.

We  summarize :  all  five  above-mentioned  approaches  indicate  that  evolutionary
computing  can  potentially  yield  useful  solutions  to  the  problem  of  Grammar
Induction of  both artificial  (regular,  context-free)  and natural  language grammars.
The length of the candidate grammar is frequently used as an input argument of the
fitness function. Note also that both solutions of  Dupont and Smith & Witten also
use a sort of « incremental » procedure whereby individual solutions gradually adapt
to every new sentence.  Especially Dupont’s findings are reminiscent of  what was
already told about « importance of starting small » when discussing works of Elman
& Harris. 

On the other hand, none of the above mentioned models was confronted with corpus
of child-directed (i.e. « motherese ») or child-originated utterances. The objective of
our Thesis shall be to fill this gap.

3.4.  Evolutionary Language Game

Evolutionary  Language  Game  (ELG)  first  proposed  in  (Nowak  et  al.  1999) is  a
stunningly  simple  yet  mathematically  feasible  stochastic  model  addressing  the
question « How could a coordinated system of meanings&sounds evolve in a group
of mutually interacting agents ?». 



In most simple terms, the model can  be described as follows: Let’s have a population
of N agents. Each agent is described by an n x m associative matrix A. A’s entry a ij

specifies how often an individual, in a role of a student, observed one or more other
individuals  (teachers)  referring to  object  i  by producing signal  j.  Thus,  from this
matrix A, one can derive the active « speaker » matrix P by normalizing rows :

while the « hearer » passive matrix Q by normalization of A’s columns:

The entries pij of the matrix P denote the probability that for an agent-speaker, object i
is associated with sound j. The entries qji  of the matrix Q denote the probability that
for an agent-hearer, a sound j is associated with the object i.

Subsequently, we  can imagine two  individuals A and A’, the first one having the
language L (P, Q), the other having the language L’ (P’, Q’). The payoff related to
communication  of  such  two individuals  is,  within  Nowak’s  model,  calculated  as
follows:
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And the fitness of the individual A in regards to all other members of the population
can be obtained as follows :
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After the fitness values are obtained for all population members, one can easily apply
traditional evolutionary computing methods in order to direct the population toward
more optimal states, i.e. states where individual matrices are mutually « aligned ». In
Nowak’s framework this alignment represents the situation when hearer and speaker
mutually understand each other, i.e. speaker has encoded meaning M by sound S and
hearer had subsequently decoded sound S as meaning M.

ELG beautifully illustrates how such an alignment of sound-meaning matrices – a
mutually shared communication protocol - can emerge practically ex nihilo given that
there is some « mutual learning » procedure mechanism involved, which allows to
transfer information from one  individual to individual another. This is attained by
creating  a  blank  « student »  matrix  and  then  filling  its  elements,  by  means  of
stochastic  « matrix  sampling »  procedure,  in  a  way  so  that  the  resulting  student
matrix  will  partially  correspond  to|  be  aligned  with  matrices  of  pre-existing
« teacher » (or teachers).

Further  discussion  and  experiments  with  ELG  are  described  (Kvasnička  and
Pospíchal) and  (Hromada 2012). All these studies point in the same direction and



suggest  that  not  only  emergence  of  mutually  shared  communication  protocol
practically  ex  nihilo is  possible  whenever  there  exists  a  means  of  transfer  of
information among individuals but also that presence of certain low amount of noise
during the learning process is the only way how to make certain that the system will
converge to « communicatively optimal » state.

The role of ELG model within the context of our Thesis is quite opened. For while it
is  the case that ELG sheds some light upon the question of emergence of language
within  a  community  of  symbolicaly  interacting  agents,  it  does  not,  principially
address the problem of language learning by a concrete individual.  Thus,  ELG is
rather a model of macroscopic phylogeny than microscopic ontogeny - it addresses
the problem of  how small communities of homo habilis could, hundred years ago,
gradually converge to system of signs within which, for example, « baubau » could
mean a banana and « wauwau » mean a lion. But it does not address a problem of
how today’s human baby learns the complex language of her mother.

On the other hand, it is not completely hors propos to imagine a slight variation of
Nowak’s model wherein one population of matrices would be fixed (representing the
linugistic competence of a teacher or mother organism) while the second population
of matrices would represent the linguistic competence of a « child ». Given that the
fitness  function  would  somehow  succeed  to  represent  the  degree  of  alignment
between  such  « mother »  and  « child »,  we  postulate  that  something  like  child’s
language competence could spontaneously emerge.

4. Remark concerning the Theory of Grammar Systems

A branch of Formal Language Theory which could be of particular use for pursposes
of our Thesis is  devoted to study of  Grammar Systems (GS). A GS is a «  set  of
grammars  working  together,  according  to  a  specified  protocol,  to  generate  a
language»  (Jiménez-López  2000).  Thus,  contrary  to  classical  Formal  Language
Theory within which one grammar generate ones language, in GS several grammars
work together in order to generate one language. Grammar Systems can be therefore
considered  as  a  sort  of  multi-agent  variants  of  traditional  « monolithic »  formal
grammar theory.

The very nature of multi-agent systems often implies cooperation, communication
distribution, modularity parallelism, or even emergence of complexity. For example,
Figure 12 illustrates a very simple bimodular « language colony »  variant of a GS. 

Figure 12: Language colony of two finite grammars cooperating to 
generate an infinite language. Figure reproduced from (Kelemen 2004)



By  allowing the finite grammar components to communicate through a common
symbolic  environment16,  one  ultimately  generates  a  language  which  is  infinite !
(Kelemen  2004) applies  the  term  « miracle »  to  such  behaviour,  which  is  very
common in the world of GS. 

Since  the  Theory  of  Grammar  Systems is  formally  very  well  developped -  most
notably  thanks  to  life-long  work  of  Erzsébet  Csuhaj-Varju  and  substantial
contributions  by  George  Paun  and  Jozef  Kelemen–  it  is  impossible  for  us  to
introduce, within the limited scope of this text, the formalism of GS Theory in closer
detail.  This  will  be done in the final  version of  our Thesis,  if  ever we decide to
poursuit our research in direction. If that will be the case, we will often refer to the
doctoral Thesis of  (Jiménez-López 2000) which contains many persuasive arguments
for application of GS upon the study of natural human languages. On the other hand,
the Thesis of Jimenez-Lopez is limited by the fact that it mostly proposes to use the
Grammar System Theory as a framework explaining the final, i.e. « adult » linguistic
component,  and  not  as  a  framework  which  could  elucidate  the  very  process  of
language development and language acquistion17.

The only tentative to use Grammar System apparatus for grammatical inference is
that  of  (Sosík  and  Štỳbnar  1997).  Contrary  to  other  authors  of  GS  who  focus
principially on the productive (i.e. generative) aspects of GS, Sosik & Štýbnar have
focused on GS's language-accepting properties. In a hybrid connectionist-symbolic
architecture, they have used a « neural pushdown automaton » to infer a language
colony  able  to  cover  some  simple  artificial  context-free  grammars  able  to  cover
balanced parenthesis or palindrom languages.

As far as we know, no tentative is reported in the litterature to solve the problem of
grammar induction of natural languages by means of evolutionary optimization of
Grammar Systems.

5. Thesis

The Thesis hereby introduced is done under double supervision of dpt. Cybernetics at
Slovak  University  of  Technology  (STU)  and  « cognitive  psychology »  laboratory
affiliated  to  University  Paris  8  (P8).  Ideally,  both   « engineering »  approach  –
common to STU – as well as more cognition-oriented « experimental » approach of
P8, should be equally reflected in the final Thesis. In order to do so, the Thesis shall,
in fact,  introduce multiple «theses » among which some shall  be addressing more
« theoretical » psychology and linguistics related phenomena and problems. 

But  due  to  its  affiliation  to  STU,  the  text  shall  also  introduce  more  concrete,

16 A common symbolic environment which is shared by different modules plays the central role in practically all 
variants of Grammar Systems. It is reminiscent of the role which « short term memory » or «working memory » 
plays in cognitive psychology. 

17 In terms of Grammar System Theory, it seems to be more appropriate to speak about «language emergence »



pragmatic  and operational  theses  aiming to  offer  a  computationally  and  formally
sound  affirmative  answer  to  the  question :  « Can  a  language  development  be
modelled as an evolutionary process ? » 

5.1. Theoretical Thesis

At first, a child has to learn

• how to segment the world into groups of discrete objects and processes

• how to segment phonetic flux into sequences of discrete linguistic tokens

The subsequent problem of language development can be analyzed as a trinity of
sub-problems:

1) vocabulary development (learning of mappings  between objects and tokens)

2) induction of grammatical categories 

3) induction of grammatical rules

These tasks are deeply and strongly intertwined. Without ability to segment world
into  objects  there  are  no  stable  referents  to  which  linguistic  tokens  could  refer.
Without ability to perceive recurrent tokens, there are no conventional symbols with
which a child could denote specific objects. Without vocabulary development (which
relates  to  induction  of  semantic  classes  which  we  have  called  « concept
construction »  in  the  text  above),  there  is  no  need  for  grammatical  rules  nor
categories.  Without grammatical categories,  grammatical  rules are just  a senseless
tautological formal game and there is no way to distinguish useful grammars from
useless ones. Without useful grammars, vocabulary development shall halt at some
locally optimal level of a « pidgin » language. 

Left on their own, these problems pose us in front of us a variant of a chicken & egg
problem which seems almost impossible to tackle. Baby’s brain, however, resolves
these problems with such such an ellegance that one is tempted to say that they even
do not exist.

Aim of the Thesis which shall follow is to demonstrate that if one interprets the above
mentioned set of problems  interpreted in terms of

• parent-child communication (imitation)

• partitioning of vector spaces (categorization)

• gradual accomodation and assimilation of knowledge (generalization)

one could subsequently state that the key theoretical Thesis we aim to defend is

Tt process of language development is an auto-organizing and potentially
evolutionary process

Note the word « potentially »,  because in order  to  be labeled as « evolutionary »,
following conjectures have to be validated :

C1)  Not  only  imitation  but  also  repetition  are  forms  of  replication :  Information



replicates not only between the brains but also in the brain.

C2)  Fitness  of  a  linguistic  structure  is  related  to  its  ability  to  represent  certain
recurrent aspect of agent’s environment : If cognitive structure matches some aspect
of environment, it gets activated. By being activated, it augments it probability of
being (at least partially) replicated.

C3)  Problems  of  both  generalization  and  overgeneralization  are  to  be  solved  by
variation|decay operators endogenously transforming the information represented in
the memory of a language-inducing system.

Acceptation  of  above-mentioned  conjectures  lead  us  to  model  of  language
development based not on tuning of parameters of single monolithic grammar, but
rather based on a population of « microgrammars », a « language colony » (Kelemen
and  Kelemenová  1992) of  mutually  communicating,  co-operating,  decaying  and
replicating sequences of production rules unceasingly trying to match the language of
linguistic environment. 

We postulate that if such an environment has certain properties of « motherese »,  a
linguistic  competence :  an  ability  to  generate  utterances  in  still  more  &  more
complex « toddlerese », shall spontaneously emerge.

Thus,  three notions will  be of  utmost  importance in the Thesis  which we hereby
introduce :  « motherese »,  « microgrammar »  and  « matching ».  The  corpus  of
« motherese », more concretely the CHILDes corpus (MacWhinney 2000) ,  will be
considered to  be sufficiently  adequate  image of  initial  stages  of  child’s  linguistic
environment.  Development  of  child’s  linguistic  competence  will  be  explained  in
terms of gradual evolution of individual « microgrammars », i.e. chromosomes whose
genomes can be understood as individual production rules. At last but not least, the
notion of  « matching » shall  furnish us the first  principle  which could potentially
allow us  to    to  explain  the  mystery  of  language  acquisition  as  an  evolutionary
process:

P1 «If (internal) rule R or substitional schema S succeeds to match some aspect of
(external) environment,  then it shall be replicated into another microgrammar»

5.2. Operational Thesis

The operational Thesis (TO) is stated as follows :

TO « There exists an evolutionary algorithm A which, when confronted with the
corpus of motherese language (LM) as an input, can produce the toddlerese

grammar (GT)  able to generate the LM -ressembling toddlerese language LT  »

The  term  « evolutionary »  means  that  the  algorithm  A shall  involve  incremental
replication,  mutation  and  selection  of  information-representing  structures.   More
concretely, these information-representing structures, i.e. genomes, shall be ordered
sequences of genes, whereby each gene shall contain an individual substitution rule.
Thus,  every  individual  genome  shall  represent  a  « microgrammar »  aiming  to
transform linguistic  token (i.e.  sequence of  terminals)  currently observable  in  the
environment,  into sequence of  non-terminals.  Whenever  such « successful  parse »



shall occur, the principle P1 shall apply and useful genes shall be reproduced into
other individual micro-grammars.  This could potentially cause the micro-grammars
to gradually adapt their structures to those of environment.

On the other hand, in order to prevent excessive adaptation, a variation operator shall
be also integrated in  the algorithm A, aiming to vaguely modeling a  well-known
phenomenon of « forgetting ». 

5.3. The organization of the Thesis

The Thesis shall be composed of five parts each of which is composed of multiple
major chapters. Every chapter consists of introduction and conclusion preceding resp.
following more specific subchapters which can fractally branch into sub-chapters ,
sub-sub-chapters etc. All such parts, chapters, sub-chapters etc. can be considered to
be « non-terminal » nodes of structure presented by this text.

The first part, labeled Theses, is a stem of whole text. It will introduce multiple theses
at varying degrees of generality which shall be all - in one way or another - more
directly addressed in subsequent sections.  In order to weave the basic conceptual
fabric, some definitions of terms like « evolution » and « language learning » shall be
also offered along the path delimited in Section 1. All variants of the thesis shall be
briefly related to other cognitive sciences.

The  second  branch,  labeled  « Theoretical  position »  is  composed  of  chapters
dedicated  to  Universal  Darwinism,  Developmental  Psycholinguistics  and  Natural
Language Processing. In these chapters, the theses presented in the first chapter shall
be more deeply interpreted and contextualized in terms of respective disciplines.

The  third  branch,  labeled  «Observations»  will  describe  multiple  longtitudinal
observations of one concrete human child. In certain cases, the generalizability of
such individual observations shall be verified or falsified by means of text-mining the
CHILDes corpora. Subsequent interpretations in terms of the evolutionary theoretical
framework shall follow.

The penultimate branch, called «Simulations» shall present multiple computational
models  addressing four  problems related to language acquisition process :  1)  The
problem of segmentation 2) The problem of induction of grammatical categories 3)
The problem of induction of grammatical rules 4) The problem of concept induction.
Specific chapter will be dedicated to every problem in which existing solutions shall
be described. Special focus shall be put on evolutionary solutions, if they exist.  To
every  of  four  above-mentioned  problems  we  shall  try  to  offer  our  own  unique
evolutionary  solution  and  subsequently  we  shall  discuss  its  performance.  PERL
source codes of diverse versions of the algorithm A shall be also attached in order to
allow reproducibility of our results by other scientists.

The conclusive branch labeled « Synthesis » shall primarily discuss results obtained
in parts « Observations » and « Simulations ». If the results turn out to be consistent
with theory, the work shall end with a tentative to integerate theses Tt  and Tt  in one
unified framework. If unsuccessful, potential reasons of the failure shall be analysed.
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