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Abstract.  We present two axiomatic and three conjectural conditions which a model 
inducing natural language categories should dispose of, if ever it aims to be considered 
as “cognitively plausible”. 1st axiomatic condition is that the model should involve a 
bootstrapping component. 2nd axiomatic condition is that it should be data-driven. 1st 
conjectural condition demands that the model integrates the surface features – related to 
prosody, phonology and morphology – somewhat more intensively than is the case in 
existing  Markov-inspired  models.  2nd  conjectural  condition  demands  that  asides 
integrating symbolic and connectionist aspects, the model under question should exploit  
the global geometric and topologic properties of vector-spaces upon which it operates.  
At last we shall argue that model should facilitate qualitative evaluation, for example in  
form of a POS-i oriented Turing Test. In order to support our claims, we shall present a  
POS-induction model based on trivial k-way clustering of vectors representing suffixal  
and co-occurrence information present in parts of Multext-East corpus. Even in very 
initial stages of its development, the model succeeds to outperform some more complex 
probabilistic POS-induction models for lesser computational cost.

Keywords:  categorization, part-of-speech induction, surface features, vector spaces, 
categorization-oriented Turing Test, partitioning of grammatical feature space, K-means 
clustering,  cognitive plausibility

1. Introduction

The  notion  of  “cognitive  plausibility”  and  “part-of-speech  induction”  shall  be  defined  in 
subsection 1.1. Subsection 1.2 shall clarify the position of syntactic category induction within  
the field of Natural Language Processing (NLP). The last subsection (1.3) shall offer a brief  
overview of the history of the problem, arguing that the current paradigm is probabilistic and 
English-centered one.
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1.1 Cognitive plausibility

This  article  enumerates  some  basic  conditions  which  should  be  fulfilled,  we  believe,  by  
engineers aiming to transform their computational models into “cognitively plausible” artificial 
agents.  We label  as  “cognitively plausible” a model  which tends to  address  some basic 
function of human cognitive system not only by simulating, in a sort of “black-box apparatus”,  
the mapping of  inputs  (stimuli,  corpus  data  etc.)  upon outputs  (results),  but  also tends  to 
faithfully  represent  the  way  how  the respective  function/skill  is 
accomplished by a human mind and its material substrate – the brain. 

In other terms, we believe that a cognitively plausible model should not only aim to attain the 
most quantitatively accurate results, but also to do so by processing the information similarly to  
the way mind does it.

The aim of this article is to elucidate the notion of “cognitive plausibility” (CP) by relating it to 
one  particular  problem,  that  of  construction  of  grammatical  categories  present  in  natural  
languages. More concretely, we shall try to illustrate our point on the problem of construction 
of part-of-speech (POS) classes. We precise that the term POS-induction (POS-i) designates the  
process which endows the human or an artificial agent with the competence to attribute the  
POS-labels  (like  “verb”,  “noun”,  “adjective”)  to  any token  observable  in  agent’s  linguistic  
environment. For the simplicity of the argument, only parts of textual corpora like Multext-East 
(Erjavec, 2012) shall be considered as such “linguistic environment” of the computational agent 
introduced below.

1.2 Part-of-Speech induction in Natural Language Processing and Language 
Acquisition studies

POS-i is often considered to be “one of the most popular tasks in research on unsupervised  
NLP” (Christodoulopoulos et al., 2010). The problem of construction of grammatical categories 
is closely related to problem of “grammar induction” and language acquisition. Since “syntactic  
category information is part of the basic knowledge about language that children must learn 
before they can acquire more complicated structures” (Schütze, 1993), it is hard to imagine any  
computational model of grammar induction - aiming to discover the set of rules of the grammar 
of  the  language  under  study-  without  it  being  able  to  construct,  in  the  first  place,  the  
equivalence classes upon which the rules-to-discover shall be applied (Elman, 1989; Solan et 
al., 2005). 

Acquisition of formal grammatical categories,  be it  parts-of-speech or others,  is  thoroughly 
studied in psycholinguistic literature – for introductory overview c.f. Levy et al.,(1988). Such 
studies often aim to address the question “whether grammatical categories are innate, or 
induced through interaction with environment by means of imitation and analogy?”. The 
result of this never-ceasing Nature&Nurture debate is vast amount of both empiric and theoretic  
knowledge  which  could  be  ideally  useful  for  any  tentative  to  bring  together  disparate  
disciplines of artificial intelligence and developmental psychology.

1.3 POS-i paradigm(s)

While already latent in worthy POS-i models, like that of (Elman, 1989) existed before, or were 
published more or less in parallel (Schütze, 1993), the paradigm currently dominating the POS-
i domain was fully born with article published by Brown et al. in 1992. Without going into 
detail, we precise that the model was successful because of its ability to apply both Markovian 



probabilistic concepts and those coming from information theory (Shannon & Weaver, 1949) 
upon the information contained  in  the  co-occurrences of  the words in  the sequences,  thus 
becoming the flagship of what we label hereby as “co-occurrence distribution” or “contextual 
distribution” (CD) paradigm. In decades to follow, the CD paradigm have clearly dominated the 
POS-i field. Be it hidden Markov Models tweaked with variational Bayes (Johnson, 2007) ,  
Gibbs  sampling  (Goldwater  &  Griffiths,  2007),  morphological  features  (Berg-Kirkpatrick,  
Bouchard-Côté, DeNero, & Klein, 2010; Clark, 2003) or graph-oriented methods (Biemann,  
2006) –  all  such  approaches  and many others  consider  contextual  co-occurrence  to  be  the 
primary source of POS-irelevant information.

But as comparative study of (Christodoulopoulos et al., 2010) indicates when demonstrating 
that models integrating morphological features tend to better than those who do not, it seems  
plausible that the uncontested primary role of CD in POS should be revised. While it is evident 
that the CD indeed must furnish relevant information if ever
distributional hypothesis is valid (Harris, 1954) and it is axiomatic that distributional hypothesis 
applies in case of any agent creating categories consistently with Hebb’s law (Hebb, 1964) we 
shall argue in subsection 3.1 that pertinent POS-I clues can be extracted not only from word’s 
“external” contextual properties but also from word’s very “internal” Mορφε.

2. Axiomatic conditions of Cognitive Plausibility

This  section  deals  with  what  we  believe  are  necessary  (i.e.  sine qua non)  conditions  of 
cognitive plausibility of a computational model . Subsection 2.1 deals with the “bootstrapping”  
condition stating that  categories  which are  being built  are  based on categories  which have 
already been built.  Emergence of bootstrapping effect shall be illustrated on a trivial multi-
iterative  re-clustering  of  clusters  pre-clustered  according  to  CD  features.  Subsection  2.2 
discusses the assumption that in order to be cognitively plausible, the model should be data  
and/or oracle-driven.

2.1 Bootstrapping the bootstrapping

From biochemistry to social sciences it is a well known fact that structuring structures are 
the  structures  structured.  Computational  Linguistics  and  NLP in  particular  is  not  an 
exception. The most general definition of the term bootstrapping (B) – i.e. that B is a self-
sustaining multi-iterative process whereby outputs of the previous iteration modify the very 
execution  of  the  next  iteration  –  could  be  indeed  apply  upon  so  many  computational  
“recurrent”,  “self-feeding”  (Riloff  & Jones,  1999),  “auto-organizing”  (Nowak et  al.,  1999) 
approaches that have been already applied in so many NLP studies, that to state about a NLP 
algorithm X that “X bootstraps” may sometimes seem to be plain tautology.

In  certain  sense  almost  any  POS-i  model  based  on  CD  paradigm  are,  ex  vi  termini, 
bootstrapping  ones  because  even  in  the  most  simplistic  models,  the  information  about  the 
membership of the target word WT in the candidate class C is inferred from the probabilities of 
membership of WL (WT’s left context) and WR (WT’s right context) to their respective candidate 
POS classes. Given the fact that the WT plays the role of right context for WL and the role of left 
context for WR, whole problem is circular and as such often calls for a bootstrapping solution.

Solan et al. (2005) refer to a crucial 4th component of their automatic distillation of structure  
(ADIOS) algorithm as “generalized bootstrapping”. Differently from the “geometric approach” 
which shall be presented in our experiment below, ADIOS implements graph-like structures in  



order to attain its aim of construction of equivalence classes useful in subsequent grammar 
induction. But in its very essence, the approach of Solan et al., i.e. that one should substitute the 
vertices  “subsumed”  by  a  “subsuming”  non-terminal  class-denoting  vertex  is  analogical, 
mutatis mutandi, to the approach presented in the following paragraphs.

1.1.1 1st experiment: Bootstrapping k-way POS clustering seeded by token 
co-occurrence features

Experiment was performed with data contained in English (en), Czech (cs) and Slovak (sk), 
corpora contained in 4th version of Multext-East corpus (Erjavec, 2012).

Table 1 . Overall statistics of analyzed corpora

Corpus Word Types Tokens TagsPOS Featcooc

Cs 19283 100368 13 70426
En 10511 134832 12 36774
Sk 20588 103452 13 74912

Table 1. presents summary statistics concerning the quantities of distinct word tokens, word 
types (i.e. tokens without context) and the most coarse-grained “gold standard” POS-tags is  
presented along with total number of distinct co-occurrence features which is equivalent to the 
number of columns (dimensions) in the resulting co-occurrence matrix.

Every word WT type was characterized by a (row) vector of values [W1L,  W2L ...WNL,  W1R, 
W2R ... WNR ], W1L referring to cases when the word W1 occurred to the left of WT, W2L to cases 
when W2L was to the left, W3R to cases when W3 was to the right from the target word. What 
results  is  a  simple  co-occurrence  matrix  with  N  rows  and  maximum  of  FeatCOOC==2*N 
columns. Given that in the experiment we were actually looking two words to the left and two 
words to the right from WT, the maximum possible number of columns was FeatCOOC =4*N. But 
since not all word couples do occur asides each other, the final number Feat COOC was always 
below the theoretical limit.

The matrix has been clustered in C={2 … 50} clusters by the fast & frugal repeated bisection k-
way  clustering  algorithm  as  implemented  in  the  clustering  tool  CLUTO  (Karypis,  2002). 
Columns were scaled according to IDF principle and the clustering was done according to  
cosine metrics. Once finished, comparison with “gold standard” yielded V-measure (Rosenberg 
& Hirschberg, 2007) values which are also illustrated as NO curves on Figure 1.

We  have  implemented  the  bootstrapping  component  in  a  following  manner:  After  each 
clustering, the information about the proposed cluster is added as a new 
feature  to  target’s  word  vector  description.  Thus,  if matrix  with  20  columns 
entered the first iteration which clustered the vectors into 5 clusters, the matrix entering the 
second iteration shall have 20+5 columns. If second iteration yields 6 clusters, a matrix with 
25+6 columns will become the input for the third iteration etc. Figure 1 shows that in case of all  
3 studied corpora, the bootstrapping BO method always attains higher scores than the static NO 
approach.1

1  Note that the V-measure of NO-bootstrap curves seem to be relatively stable in regards to increase of  
number of clusters. Contrary to many-to-one accuracy (purity) which increases with number of clusters, 
V-measure thus seems to be better evaluation measure for cases when solutions containing different 
numbers of clusters have to be compared.



Fig. 1. Bootstrapping of contextual co-occurrence statistics

2.2 Data and oracle-driven learning

Computational models unable to analyze what they have previously synthesized and synthesize 
what they have previously analyzed could be hardly labeled as “cognitively plausible”. But  
even the presence of such “dialectic” component cannot be the guarantee of absolute success, if  
ever  the model’s  initial  prima materia  – the data  with which the whole bootstrapping is 
initiated – are not adapted to model’s prewired “innate” state.

It is unfortunately often the case in computational linguistics that whenever the model does not  
attain the expected performance, huge amount of effort is invested into tuning the model by  
diverse  ad hoc  modifications. After hours of exhaustive search, both intellectual as well as 
automatic,  diverse parameters,  meta-parameters and hyper-parameters are finally discovered 
which  allow  the  model  to  attain  somewhat  superior  performances  when  confronted,  for 
example, with Wall Street Journal (WSJ) corpus But human categorization faculties – POS-i  
included – do not develop in such a way. While it seems plausible that same sort of “tuning of 
parameters” indeed takes place during initial period of language acquisition, it seems to be so 
efficient because the data itself is well adapted to ever-evolving state of baby’s neuro-linguistic  
structures. Said more concretely, parents do not recite to its children the WSJ or Eulex corpora 
in order to adjust the synaptic weights in the brains of their children, they rather modify all their  
narrative  intentions  by  pragmatic,  prosodic,  phonological  as  well  as  semantic  Babytalk 
(Ferguson, 1964) cognitive filters. In doing so – by pre-processing the stimuli before it even 
attains  perceptual  buffers  of  child  agent’s  ears  –  parents  affirm  themselves  in  the  role  of  
computational oracle (Turing, 1939). 



Since it was already demonstrated by Clark (Clark, 2010) with sufficient analytical clarity that  
the  “supervision”  coming  from  external  oracle  machines  can  significantly  reduce  the 
complexity of the grammar induction and POS-i problems, we found it worthwhile to state that 
“fully  unsupervised  approaches  are  very  rare  because  the  engineer’s  decision  to 
confront  the algorithm  with  corpus  X  and  not  Y,  and  to  do  so  in  the 
moment T1 and not T2, is already an act of supervision”.

By saying so we do not want to underestimate the importance of using the same corpora for 
mutual comparison of scientific results. We simple want to indicate that, because it determines  
everything  which  follows,  the  question  of  corpus  choice  should  not  be  neglected.  More 
concretely,  cognitively plausible models of POS-i should be firstly tuned and “raised” with  
corpora like CHILDes (MacWhinney, 2000) and only later should be their scope of validity  
extended by means of confrontation with corpora of adult and expert utterances.

3. Conjectural conditions of  model’s  Cognitive Plausibility

Subsection  3.1  discuss  the  role  of  non-distributional  “surface”  features  for  POS-induction. 
Discussion is followed by results of an experiment  suggesting that  features like suffix  can 
indeed  offer  quite  strong  clues  for  the  creation  of  syntactic  categories.  Subsection  3.2 
introduces  a  conjectural  condition  for  model’s  CP by  proposing  to  base  it  principally  on 
geometric grounds. It is followed by subsection 3.3 arguing that CP model should facilitate 
evaluation  by  means  of  qualitative  inspection.  In  general,  these  sections  deal  with  CP’s 
conjectural conditions, meaning that while they may seem less self-evident that the axiomatic  
ones, we nonetheless consider them as valid.

3.1 Integration of surface features

Natural languages are very redundant communication channels (de Saussure., 1922; Shannon & 
Weaver,  1949).  Three facets of the word – its morpho-phonological  signifiant,  its  invisible 
signifiée and its its syntactic function – are not independent from one another and more often 
than  not  do  they  significantly  overlap  (Jackendoff,  2003;  Lakoff,  1990).  Thus  it  is  not 
surprising that especially in morphologically rich languages, token’s very syntactic function is  
encoded by morphemes present in the surface, i.e. objectively perceivable form, of the token  
itself.  And results obtained by Clark (Clark, 2003) or (Berg-Kirkpatrick et al., 2010) indeed 
point in this direction – it may be no coincidence that approaches which exploit  morphological  
features turned out, in (Christodoulopoulos et al., 2010) comparative study, to perform better 
than models which do not use such features.

1.1.2 2nd experiment : Assessing the impact of sufixal  features on part-of-
speech categorisation

We used the same three Multext-East corpora as in the first experiment. Ultimate character  
trigram was extracted from every word type and considered to be a feature. Word types are 
subsequently clustered in C clusters according these  FeatSUFFIX orthogonal dimensions. The 
comparison with Mutext-East gold standard subsequently yields V-measures (V), entropies (H) 
and purities (P) presented in Table 2. 



Table 2.  Performance of model’s inducing C categories solely according to suffixal features

C=10 C=30 C=50
Cs
534

V=0.178
H=0.487
P=0.582

V=0.24
H=0.392
P=0.642

V=0.26
H=0.34
P=0.69

En
286

V=0.248
H=0.428
P=0.639

V=0.215
H=0.4

P=0.652

V=0.2
H=0.39
P=0.66

Sk
523

V=0.17
H=0.5

P=0.504

V=0.272
H=0.373
P=0.685

V=0.274
H=0.339
P=0.714

Amount below the corpus name in the above table denotes the length of the FeatSUFFIX vector, 
i.e. the number of distinct suffixal trigrams observed in their respective corpora.

FeatSUFFIX-driven model attains lesser V-measures as had obtained (Christodoulopoulos et al., 
2010) when evaluating models of (Clark, 2003) or (Berg-Kirkpatrick et al., 2010) within their 
2013 comparative study. The very same study however also indicates that even the simplistic  
FEATSUFFIX-driven model can be worth of certain interest since it seems to be quite fast – in  
comparison to models harnessing the power of more than dozen computational cores to attain 
comparable or even better V-measures than FEATSUFFIX-driven method , we are glad to state that 
in order to attain results presented above, our dual-core Pentium needed in average T EN=1.8, 
TSK=3.2, TCS=3.6 seconds per simulation.

3.2 Knowledge is geometric

After  the Turing machine symbol-operating paradigm started to  put  more importance upon 
ever-still more & more fine-grained modular to probabilistic and connectionist models. But in 
recent years, a “geometric” paradigm starts to gain momentum in diverse fields of cognitive 
sciences including computational linguistics and NLP. In experiments described above such 
paradigm was harnessed in a sense that  instead of modulating weights along different 
dimensions, geometers often modulate the number of dimensions itself. It could be 
possibly reproached to such a geometric approach that associating every plausible feature with 
a  new  dimension  can  induce  some  serious  matrix-sparsity  problems  and|or  that  such  an 
approach would be, sooner or later, confronted with insurmountable computational and memory 
limits. It is true that methods by means of which some older approaches deal with the problem  
of huge co-occurrency matrices can be very costly, as is the case, for example, in singular value  
decomposition within LSA (Landauer & Dumais, 1997). But since very elegant, simple and 
concise representations of sparse matrices can be very easily generated (Karypis, 2002) and 
since lemma of Johnson-Lindenstrauss (W. B. Johnson & Lindenstrauss, 1984) indicates that 
sparse high-dimensional matrices can be easily projected into low-dimensional as is often done 
in random-indexing (Sahlgren,  2005),  it  seems to be plausible  to  state that construction of  
vector spaces which are 1) dense but 2) transformable for low computational cost 3) encode 
huge amount of features attributed to huge amount of objects is not so problematic as it used to  
be in time when HMM-mastered POS-i paradigm was born.

Series  of  articles  by  Sahlgren  (2002;  2005),  Cohen  (2010),  Widdows  (2004)  and  their 
colleagues  offer  valuable  initiation  into  advantages  of  random-projection  based  semantic 
models.  For  more  general  discussion  of  “geometrization  of  thought”  in  diverse  fields  of 
cognitive sciences, see (Gärdenfors, 2004). Within all such geometric models, categories can be  
considered as local subspaces of a global space derived from the data.



3.3 Mix of quantitative and qualitative evaluation

Performance  of  early  grammatical  category  induction  models  was  evaluated  manually  by 
introspection into induced equivalence classes and articles published in the period of “golden  
age” of POS-i often used to enumerate members of at least one particularly pleasing class or  
presenting  their  dendograms.  Such  an  approach  was  later  critiqued  by  Clark  (2003)  as 
“inadequate” and attention of POS-I community turned towards more quantitative  measures 
like  perplexity,  conditional  entropy,  cross-validation  (Gao  &  Johnson,  2008),  one-to-one 
(Haghighi & Klein,  2006) or  many-to-1 accuracy (purity);  variation of  information (Meila, 
2003) , substituable F-score (Frank et al., 2009) etc. 

For the purposes of this article we had decided to present our simulations principally in terns of 
V-measure.  Given its  elegance,  stability  in  regards to  growing number of  clusters  but  also 
certain “strictness” (note that even the best performing models present in comparative study 
(Christodoulopoulos et al., 2010)  rarely  surpass the V>0.6 limit), we consider the V-measure 
to be very valuable quantitative measure of performance of clustering POS-i algorithms.

But we also believe that the “old school” many-to-1 purity measure can be of certain interest,  
especially for those aiming to create a “semi-supervised bridge” between POS-induction and 
POS-tagging models; or by those aiming not to evaluate the performance of the model by rather 
to gain insights of correct annotations of analyzed corpora. In other terms, asides to “global”  
statistic measures informing the researcher about the overall performance of the model, more 
“local” measures can still  offer interesting and useful information about individual induced 
classes themselves. Values presented in Table 3 represent the number C of clusters into which 
the corpus has to be partitioned in order to obtain at least  Φ absolutely pure (i.e. Purity=1) 
classes.

Table 3. Distillation of absolutely pure categories

SFFX CD CD+BO SFFX+CD+BO
Φ=1 72 168 107 69
Φ=2 92 194 142 71
Φ=3 105 196 180 80
Φ=4 126 248 189 90
Φ=5 131 281 194 96
Φ=10 160 377 256 116

For example, in order to obtain an absolutely pure cluster on the basis of contextual distribution 
(CD) features, one would have to partition the English part of Multext-East corpus into 168 
clusters among which shall emerge following noun-only cluster:

authority, character, frontispiece, judgements, levels, listlessness, popularity, sharpness, stead,  
successors, translucency, virtuosity

Interesting insights can also be attained by inspection of some exact points of the clustering  
procedure. Let’s inspect, as an example, the case when one clusters the English corpus into 7 
clusters according to features both internal to the word – i.e. suffixes – and external – i.e. 
co-occurrence with other words co-occurrence. Such an inspection indicates that the model 
somehow succeeds to distinguish verbs from nouns. As is shown on Table 4, whose columns 
represent the “gold standard” tags and rows denote the artificially induced clusters, our naïve 



computational model tends to put nouns in clusters 4 and 6 while putting verbs into clusters 2, 3  
and 5. 

Table 3 . Origins of Noun-Verb distinction

N V M D R A S C I P X G
0 10 3 0 0 413 30 0 0 0 0 1 0
1 568 67 0 0 1 0 1 2 0 1 0 0
2 97 668 0 0 1 137 3 2 0 0 0 0
3 13 1011 1 0 275 0 2 0 0 0 0 0
4 1173 67 4 0 6 133 0 0 0 4 3 0
5 608 958 72 67 252 321 99 72 7 106 3 12
6 1977 97 22 0 42 1091 3 0 3 0 2 0

The objective of our ongoing work is to align as much as possible such “seeding” states like 
that presented on Table 4. with data consistent with psycholinguistic knowledge about diverse 
stages of language acquisition process. 

At last but not least, we believe that the temporal aspects of model’s performance, i.e. the 
answer to the question “How long does the model need to run in order to furnish reasonable 
results?”  should be always seriously considered.  One way how to evaluate such temporal 
aspects of categorization could be a simplistic Turing-Test (TT) like POS-i oriented scenario 
where the evaluator asks the model (or an agent) to attribute the POS-label to word posed by  
evaluator, or at least to return a set of members of the same category. In such a real-
life scenario, an absolute perfection of possible future answer could be possibly traded off for  
less perfect (yet still locally optimal) answer given in reasonable time.

But  because with  this  TTPOS proposal  we already depart  from the  domain of  unsupervised 
induction towards semi-supervised “learning with oracle” or fully supervised POS-tagger, we 
conclude  that  we  consider  the  condition  “cognitively  plausible  model  of  part  of  speech  
induction should be evaluated by both quantitative and qualitative means” to be the weakest  
among all proposals concerning the development of an agent inducing the categories of natural  
language in a “cognitively plausible” way.

4. Conclusion

Model should be labeled as “cognitively plausible” model of certain human faculty if and only 
if it not only accurately emulates the input (problem) → output (solution) mapping executed by 
the faculty, but also emulates the basic “essential” characteristics associated to such mapping 
operation in case of human cognitive systems, i.e. emulates not only WHAT but also HOW the  
problem → solution mapping is done.

In relation to the problem of how part-of-speech induction is effectuated by human agents, two 
characteristic conditions have been defined as axiomatic (necessary). First postulates that POS-i 
should involve  a  “bootstrapping” multi-iterative  process  able  to  subsume terminals  sharing 
common features under a new non-terminal and to subsequently exploit the information related 
to occurrence of the new non-terminal to extend the (vectorial) definition terminals represented 
in the memory. Ideally the process should converge to partitions “optimally” corresponding to  
the gold standard. First experiment has shown for three distinct corpora that even a very simple 
model  based  on  clustering  of  the  most  trivial  co-occurrence  information  can  attain  higher  
accuracies if such a bootstrapping component is involved. The second necessary condition of 



POS-i’s  CP is  that  it  should  be  data  or  oracle-driven.  It  should  perform better  when first 
confronted with simple corpora like CHILDes (MacWhinney, 2000) and only latter with more 
complex ones than if it would be first confronted with complex corpora. 

Another condition of POS-i’s CP proposed that morphological and surface features should not 
be neglected and instead of playing a secondary “performance increasing role”, they should 
possibly “seed” whole bootstrapping process which shall follow. This condition is considered to 
be conjectural (i.e. “weaker” ) just because it points to somewhat orthogonal direction than does 
a traditionally acclaimed distributional hypothesis (Harris, 1954). It may be the case, however,  
that  especially  native  speakers  of  some  morphologically  rich  languages  shall  consider  the 
“syntax-is-also-IN-the-word” paradigm not only as conjectural but also axiomatic. 

Another “weak” condition of cognitive plausibility postulates that many phenomena related to 
mental representations and thinking, POS-i included, can be  not only described but also 
explained  and  represented  in  geometric  and  topologic  terms.  Ideally,  the  geometric 
paradigm (Gärdenfors, 2004) should not be contradictory but rather complenetary to symbolic  
and  connectionist  paradigms.  The  last  and  weakest  condition  of  CP  proposed  that 
computational  models  of  part-of-speech  induction  should  be  not  only  easily  quantitatively 
analyzed but should be also transparent for researcher’s or supervisor’s qualitative analyses. 
They should facilitate  and not  complicate  posing of  all  sorts  of “Why?” questions and the 
results should be easily interpretable. A sort of categorization-faculty Turing Test was proposed 
which could be potentially embedded into the linguistic component of the hierarchy of Turing  
Tests which we propose elsewhere (Hromada, 2012).

It may be the case that the list of conditions of cognitive plausibility presented in this article is 
not  sufficient  one  and  should  be  extended  with  other  terms  like  “modularity”,  “self-
referentiality”  or  notions  coming  from  complex  systems  and  evolutionary  computing. 
Regarding the problem of elucidation of how could a machine induce, from the environment-
representing corpus, the categories in a way analogical to that of a child learning by imitating  
its parents, we consider even the list of 2 strong precepts and 3 weak precepts hereby presented 
as quite useful and possibly necessary.
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