baumhaus.digital/Art, Cognition, Education/Human and Machine Learning/Supervised learning/Training
In supervised machine learning, training is the process of teaching a model, like a classifier, to make accurate predictions by learning patterns from labeled data. Each data point in the training set includes features (characteristics or inputs that describe the data, like size or color) and a corresponding label (the correct output or category). The model uses this data to adjust its internal parameters, minimizing the error between its predictions and the actual labels. This is done through algorithms like gradient descent. The goal is to generalize from the training data, enabling the classifier to make accurate predictions on new, unseen data.